A Is ##\delta\left(a+bi\right)=\delta\left(a-bi\right)##?

  • A
  • Thread starter Thread starter Anixx
  • Start date Start date
Click For Summary
The discussion centers on the equality of the delta function for complex arguments, specifically whether ##\delta(a+bi)## equals ##\delta(a-bi)##. It is established that the second integral in the delta function representation is zero, while the first does not depend on the sign of ##b##, suggesting the two should be equal. However, this conclusion contradicts established results that indicate the integral depends on the sign of ##b##. The conversation highlights potential issues with the justification of certain integral manipulations, particularly regarding absolute convergence in the context of distributions. The confusion between complex and real arguments is also noted as a critical aspect of the discussion.
Anixx
Messages
88
Reaction score
11
We can write Delta function as

$$\delta(z) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{itz}\, dt=\delta\left(a+bi\right)=\frac1{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\cos ax\, dx+\frac{i}{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\sin ax\, dx.$$

The second integral is always zero (via Abel regularization, Laplace transform), the first integral does not depend on the sign of ##b##. So, ##\delta\left(a+bi\right)## should be equal to ##\delta\left(a-bi\right)##.

But this contradicts https://math.stackexchange.com/a/4045521/2513
$$\int_{-\infty}^\infty \delta(t+bi)f(t)dt=f(-bi)$$

which depends on the sign of ##b##.
 
Physics news on Phys.org
Fix the integrals! Off hand they look like divergent.
 
I am guessing that the following leap $$\int_{-\infty}^\infty e^{-bx}(\cos(ax)+i\sin(ax))\,dt=\int_{-\infty}^\infty e^{-bx}\cos(ax)\,dz+i\int_{-\infty}^\infty e^{-bx}\sin(ax)\,dt$$ is not justified due to failure of absolute convergence (in some generalized sense that applies to distributions).
 
Anixx said:
We can write Delta function as

$$\delta(z) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{itz}\, dt=\delta\left(a+bi\right)=\frac1{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\cos ax\, dx+\frac{i}{2\pi}\int_{-\infty}^{+\infty}e^{-bx}\sin ax\, dx.$$

The second integral is always zero (via Abel regularization, Laplace transform), the first integral does not depend on the sign of ##b##. So, ##\delta\left(a+bi\right)## should be equal to ##\delta\left(a-bi\right)##.

But this contradicts https://math.stackexchange.com/a/4045521/2513
$$\int_{-\infty}^\infty \delta(t+bi)f(t)dt=f(-bi)$$

which depends on the sign of ##b##.
You are confusing complex and real arguments here. See:

https://mathoverflow.net/questions/118101/dirac-delta-function-with-a-complex-argument
 

Similar threads