MHB Is $g(z)$ holomorphic if $f$ is holomorphic in $G$?

  • Thread starter Thread starter Euge
  • Start date Start date
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW, suggested by Chris L T521:

-----
$\newcommand{\CC}{\mathbb{C}}$ Let the function $f$ be holomorphic in the open set $G\subset\CC$. Prove that the function $g(z)=\overline{f(\overline{z})}$ is holomorphic in the set $G^{\ast}=\{\overline{z}:z\in G\}$.
-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was answered correctly by Cbarker1. You can read his solution below.
Let $g: G^{\ast} \to \Bbb{C}$ is given by $g(z)=\overline{f(\overline{z})}$. By definition of holomorphic, let $z_0 \in G^{\ast}$ be arbitrary, we have
\begin{align*}
&g'(z_0)=\lim_{{z}\to{z_0}}\frac{g(z)-g(z_0)}{z-z_0}\\
& =\lim_{{z}\to{z_0}}\frac{\overline{f(\overline{z})}-\overline{f(\overline{z_0})}}{z-z_0} & (\text{by the definition of g})\\
& =\lim_{{z}\to{z_0}}\frac{\overline{f(\overline{z})-f(\overline{z_0})}}{z-z_0} \\
&=\overline{f'(\overline{z_0})} &(\text{f is holomorphic}).
\end{align*}Thus, $g$ is holomorphic in the set $G^{\ast}$.
 
Back
Top