Is $I$ an Ideal in a Ring $R$?

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
Click For Summary

Discussion Overview

The discussion revolves around whether a unique maximal right ideal \( I \) in a ring \( R \) is indeed an ideal, and the implications of this property. Participants explore the definitions and properties of ideals, particularly focusing on the conditions under which \( I \) can be classified as a left ideal as well, and the implications for elements outside of \( I \).

Discussion Character

  • Exploratory
  • Technical explanation
  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that to show \( I \) is an ideal, it must be demonstrated that \( I \) is also a left ideal.
  • There is discussion about the properties of the set \( rI \) for \( r \in R \), with some participants asserting that \( rI \) is an additive subgroup of \( R \) and thus a right ideal.
  • One participant suggests that if \( rI \neq R \), then \( rI \) must be contained in \( I \), leading to the conclusion that \( I \) is a left ideal.
  • Another participant questions what happens if \( r \) has a right inverse, indicating a need to explore different cases.
  • There is a proposal to use an argument from another source to show that if \( rI = R \), it leads to a contradiction, but this argument is challenged by another participant.

Areas of Agreement / Disagreement

Participants generally do not reach a consensus on the implications of \( rI = R \) and whether the argument from the referenced post is valid. Multiple competing views remain regarding the classification of \( I \) and the conditions under which it holds.

Contextual Notes

Participants express uncertainty about the validity of certain arguments and the implications of specific properties of ideals. There are unresolved questions about the nature of \( rI \) and its relationship to \( I \) and \( R \).

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $R$ be a ring and let $I\subseteq R$ the unique maximal right ideal of $R$.
I want to show the following:
  1. $I$ is an ideal
  2. each element $a\in R-I$ is invertible
  3. $I$ is the unique maximal left ideal of $R$
For 1. we have to show that $I$ is also a left ideal, right? (Wondering)

Could you give me some hints how we could show that? (Wondering)
 
Physics news on Phys.org
mathmari said:
Hey! :o

Let $R$ be a ring and let $I\subseteq R$ the unique maximal right ideal of $R$.
I want to show the following:
  1. $I$ is an ideal
  2. each element $a\in R-I$ is invertible
  3. $I$ is the unique maximal left ideal of $R$
For 1. we have to show that $I$ is also a left ideal, right? (Wondering)

Could you give me some hints how we could show that? (Wondering)
For 1., let $r\in R$. What can you say about the set $rI$?
 
Opalg said:
For 1., let $r\in R$. What can you say about the set $rI$?

We have that $I$ is a right ideal, so it is an additive subgroup of $R$, so when $i,j\in I$ then $-i, i+j\in I$.

Let $a,b\in rI$, then $a=ri_1, b=ri_2, \ i_1, i_2\in I$.
Then we have the following:
$$-a=-(ri_1)=r(-i_1)\in rI \\
a+b=ri_1+ri_2=r(i_1+i_2)\in rI$$

So, $rI$ is an additive subgroup of $R$. For $x\in R$, $a'=ra\in rI$ we have that $a'x=rax\in rI$, since $I$ is a right ideal and so $ax\in I$.

That means that $rI$ is also a right ideal, right? (Wondering)
 
mathmari said:
We have that $I$ is a right ideal, so it is an additive subgroup of $R$, so when $i,j\in I$ then $-i, i+j\in I$.

Let $a,b\in rI$, then $a=ri_1, b=ri_2, \ i_1, i_2\in I$.
Then we have the following:
$$-a=-(ri_1)=r(-i_1)\in rI \\
a+b=ri_1+ri_2=r(i_1+i_2)\in rI$$

So, $rI$ is an additive subgroup of $R$. For $x\in R$, $a'=ra\in rI$ we have that $a'x=rax\in rI$, since $I$ is a right ideal and so $ax\in I$.

That means that $rI$ is also a right ideal, right? (Wondering)
That is correct. For the next step, what I'm hoping is true is that every right ideal should be contained in a maximal right ideal ...
 
Opalg said:
That is correct. For the next step, what I'm hoping is true is that every right ideal should be contained in a maximal right ideal ...

Since $I$ is a maximal right ideal, $rI$ is either a subset of $I$ or it is the entire ring $R$.

If $r$ has not a right inverse in $I$, then $rI$ doesn't contain $1$, so it must be $rI\subset I$.

Is this correct? (Wondering)

What if $r$ has a right inverse? (Wondering)
 
There are the following cases:
  1. If $rI\neq R$, then it must be $rI\subseteq I$, since $I$ is the unique maximal right ideal of $R$.
    If $rI\subseteq I$, then $ri\in I, \forall i\in I, \forall r\in R$.
    So, $I$ is a left ideal.
    Since $I$ is a right and a left ideal, it follows that $I$ is an ideal.

    $$$$
  2. If $rI=R$, then $ri=1$ for some $i\in I$.
    We have that $ir\in I$ since $I$ is a right ideal, so $ir\neq 1$.
    Then I thought to use post #8 of http://mathhelpboards.com/linear-abstract-algebra-14/statement-true-18331.html#post84301 to say that since $1-ir$ has no right inverse, it follows that $(1-ir)R\neq R$.
    Then $(1-ir)R$ is contained in the maximal right ideal, i.e., $(1-ir)R\subseteq I$. Then $1-ir\in I$.
    We have that $1=ir+(1-ir)\in I$, a contradiction.
    So, $rI\neq R$.

    But at the other post they told me that the argument of post #8 is not true... Do you maybe have an other idea how we can reject the case $rI=R$ ? (Wondering)
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 31 ·
2
Replies
31
Views
2K
Replies
20
Views
4K
Replies
21
Views
4K