MHB Is it possible to find natural numbers a and b that satisfy 2^a-3^b = 7?

Click For Summary
The discussion revolves around finding natural numbers a and b that satisfy the equation 2^a - 3^b = 7. A participant confirms that a solution exists and has provided a pair of values that meet the criteria. There is a request for a detailed analytical derivation and proof regarding the uniqueness of the solution. Participants clarify their intentions regarding the wording of their requests for solutions. The conversation emphasizes the need for a comprehensive explanation of the solution process.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Find natural numbers a and b such that $2^a-3^b = 7$
 
Mathematics news on Phys.org
By observation, $2^4 - 3^2 = 7$.
 
Bacterius said:
By observation, $2^4 - 3^2 = 7$.

Answer is right but I want solution
 
kaliprasad said:
Answer is right but I want solution

This is a solution, I've shown a pair $(a, b)$ in natural numbers which satisfies your challenge. Do you mean you want it derived analytically along with a proof that there is only one (or more, I don't know) such pair(s)? :p
 
Bacterius said:
This is a solution, I've shown a pair $(a, b)$ in natural numbers which satisfies your challenge. Do you mean you want it derived analytically along with a proof that there is only one (or more, I don't know) such pair(s)? :p

You are right I meant solve. Sorry for wrong wording
 
Above answer is correct
the full solution is

a cannot be odd because if a is odd then$2^a$ mod 3 = -1 so $2^a – 3^b$ mod 3 = -1 so it cannot be 7 as 7 = 1 mod 3b cannot be odd as if b is odd $3^b$ =3 mod 8
so $2^a – 3^b = 5$ mod 8 for a >= 3if a = 1 or 2 $2^ a< 7$ so $2^a – 3^b = 7$ not possibleso a and b both are evensay a = 2x and b = 2yso $2^{2x} – 3^{2y} = 7$or $(2^x + 3^y)(2^x- 3^y) = 7$so $2^x + 3^y = 7$ and $2^x – 3^y = 1 $solving these 2 we get x = 2 and y = 1 or a= 4 and b = 2
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K
  • · Replies 6 ·
Replies
6
Views
550
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K