MHB Is it possible to find natural numbers a and b that satisfy 2^a-3^b = 7?

AI Thread Summary
The discussion revolves around finding natural numbers a and b that satisfy the equation 2^a - 3^b = 7. A participant confirms that a solution exists and has provided a pair of values that meet the criteria. There is a request for a detailed analytical derivation and proof regarding the uniqueness of the solution. Participants clarify their intentions regarding the wording of their requests for solutions. The conversation emphasizes the need for a comprehensive explanation of the solution process.
kaliprasad
Gold Member
MHB
Messages
1,333
Reaction score
0
Find natural numbers a and b such that $2^a-3^b = 7$
 
Mathematics news on Phys.org
By observation, $2^4 - 3^2 = 7$.
 
Bacterius said:
By observation, $2^4 - 3^2 = 7$.

Answer is right but I want solution
 
kaliprasad said:
Answer is right but I want solution

This is a solution, I've shown a pair $(a, b)$ in natural numbers which satisfies your challenge. Do you mean you want it derived analytically along with a proof that there is only one (or more, I don't know) such pair(s)? :p
 
Bacterius said:
This is a solution, I've shown a pair $(a, b)$ in natural numbers which satisfies your challenge. Do you mean you want it derived analytically along with a proof that there is only one (or more, I don't know) such pair(s)? :p

You are right I meant solve. Sorry for wrong wording
 
Above answer is correct
the full solution is

a cannot be odd because if a is odd then$2^a$ mod 3 = -1 so $2^a – 3^b$ mod 3 = -1 so it cannot be 7 as 7 = 1 mod 3b cannot be odd as if b is odd $3^b$ =3 mod 8
so $2^a – 3^b = 5$ mod 8 for a >= 3if a = 1 or 2 $2^ a< 7$ so $2^a – 3^b = 7$ not possibleso a and b both are evensay a = 2x and b = 2yso $2^{2x} – 3^{2y} = 7$or $(2^x + 3^y)(2^x- 3^y) = 7$so $2^x + 3^y = 7$ and $2^x – 3^y = 1 $solving these 2 we get x = 2 and y = 1 or a= 4 and b = 2
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...

Similar threads

Replies
3
Views
2K
Replies
24
Views
3K
Replies
17
Views
2K
Replies
6
Views
4K
Replies
5
Views
3K
Back
Top