Re: Solving differential equations
Prove It said:
Actually, it IS the same. \( C \) is arbitrary, so it could be used to represent \( c_1 \) or \( c_2 \), depending on the value of \( x \)...
No! It is not the same. Let me make it even simpler. Ignore $1/x$. Let me just ask you the following question.
What is the most general anti-derivative of $0$?
It depends on what domain we choose for the zero function. If I define the function $g(x) = 0$ on $(-\infty,\infty)$ then the most general anti-derivative is $C$, and by $C$ I simply mean the constant function which is identically $C$ throughout the domain $(-\infty,\infty)$.
In fact, what is the proof of the above statement, i.e. that the most general anti-derivative of $g(x)$ is $C$? It uses the mean-value theorem.
However, let us define the function $h(x) = 0$ but with domain $(-\infty,0)\cup (0,\infty)$ then the most general anti-derivative is no longer just the constant function. Indeed, consider the function $F$ defined to be $1$ on $(-\infty,0)$ and defined to be $2$ on $(0,\infty)$. Then clearly $F'=0$ however $F$ is not a constant function.
It would be helpful to know exactly what goes wrong in the above statement. If you try to use the mean-value theorem for the function $h$ it is not going to work because if you pick a point $p$ in $(-\infty,0)$ and you pick a point $q$ in $(0,\infty)$ then the interval $[p,q]$ is no longer part of the domain of $h$! And so you cannot use the mean-value theorem any longer!
The most general anti-derivative of $h$ is rather the function $c_1$ on $(-\infty,0)$ and $c_2$ on $(0,\infty)$ where $c_1$ and $c_2$ can be different numbers.
I am not sure what your back ground is, but here is a much general result that is topological in nature (again, I am not sure what your back ground is so perhaps this will be meaningless to you in which case just ignore it). Theorem: If $U$ is an open (non-empty) subset of $\mathbb{R}$ and $f$ is a differenciable function on $U$ so that $f' = 0$ then $f$ is
locally-constant, in particular it is constant on the connected components of $U$ (and so if $U$ is an interval then $f$ must be constant through out).