- #1
xJJx
- 56
- 2
Hi guys, I'm currently trying to study the energy conversions of a spring - can someone tell me if my understanding of it is completely correct or not? Thank you so much! I made it as detailed as I could:
One complete oscillation of a spring: The spring starts off stationary, meaning it has no kinetic energy and no EPE, it only has GPE. As the spring is being deformed, it is gaining EPE and KE. The spring then reaches its maximum possible deformation; at this point, the spring has maximum EPE and zero KE. Once the deforming forces stop acting on the spring, it eventually returns back to its original shape; the spring oscillates towards its equilibrium position whilst all of its EPE is getting transferred into KE. At the equilibrium position, all of the springs EPE has now been transferred into KE, so the spring has maximum KE and zero EPE. The spring then oscillates towards its maximum possible deformation (the type of deformation is the opposite to its first type of deformation) whilst all of its KE is getting transferred into negative EPE. At the maximum possible deformation, all of the springs KE has now been transferred into negative EPE, so the spring has maximum negative EPE and zero KE. The spring then oscillates back towards its equilibrium position whilst all of its negative EPE is getting transferred into KE. At the equilibrium position, all of the springs EPE has now been transferred into KE, so the spring has maximum KE and zero EPE. The spring has now returned back to its original shape.
One complete oscillation of a spring: The spring starts off stationary, meaning it has no kinetic energy and no EPE, it only has GPE. As the spring is being deformed, it is gaining EPE and KE. The spring then reaches its maximum possible deformation; at this point, the spring has maximum EPE and zero KE. Once the deforming forces stop acting on the spring, it eventually returns back to its original shape; the spring oscillates towards its equilibrium position whilst all of its EPE is getting transferred into KE. At the equilibrium position, all of the springs EPE has now been transferred into KE, so the spring has maximum KE and zero EPE. The spring then oscillates towards its maximum possible deformation (the type of deformation is the opposite to its first type of deformation) whilst all of its KE is getting transferred into negative EPE. At the maximum possible deformation, all of the springs KE has now been transferred into negative EPE, so the spring has maximum negative EPE and zero KE. The spring then oscillates back towards its equilibrium position whilst all of its negative EPE is getting transferred into KE. At the equilibrium position, all of the springs EPE has now been transferred into KE, so the spring has maximum KE and zero EPE. The spring has now returned back to its original shape.
Last edited by a moderator: