Is my use of Einstein notation correct in this example?

Click For Summary
SUMMARY

The discussion centers on the correct application of Einstein notation in the context of a diagonal matrix R, specifically R = diag[1, -1, 1]. It is established that using Rα Rβ = 1αβ is incorrect due to the equal indices implying summation, which leads to confusion. The proper notation involves using the Kronecker delta δαβ instead of the identity matrix notation, and the correct representation of R in Einstein notation is Rαβ = r(β)δαβ, where r(β) are the diagonal components of the matrix. The discussion emphasizes the importance of distinguishing between tensor components and scalar values in Einstein notation.

PREREQUISITES
  • Understanding of Einstein summation convention
  • Familiarity with matrix notation and operations
  • Knowledge of tensor algebra and components
  • Basic concepts of linear algebra, specifically diagonal matrices
NEXT STEPS
  • Study the properties of the Kronecker delta in tensor notation
  • Learn about the implications of index notation in tensor calculus
  • Explore the differences between scalar and tensor components in physics
  • Review examples of diagonal matrices and their representations in Einstein notation
USEFUL FOR

Mathematicians, physicists, and students of advanced mathematics who are working with tensor calculus and Einstein notation, particularly in the context of linear algebra and matrix theory.

redtree
Messages
335
Reaction score
15
TL;DR
I am wondering if I am using it correctly
I am wondering if I am using Einstein notation correctly in the following example.

For a matrix ##R## diagonal in ##1##, except for one entry ##-1##, such as ##R = [1,-1,1]##, is it proper to write the following in Einstein notation:
##R_{\alpha} R_{\beta} = \mathbb{1}_{\alpha \beta} ##, such that ##\Gamma_{\alpha} \Gamma_{\beta} = \Gamma_{\alpha} \Gamma_{\beta} \mathbb{1}_{\alpha \beta} = \big(R_{\alpha}\Gamma_{\alpha} \Big) \Big( R_{\beta}\Gamma_{\beta}\Big)##
 
Physics news on Phys.org
It is wrong.
First of all, equal index in up and down positions implies summation. So

##R_a R_b = 1_{a b}## Is wrong, and to be honest, i don't even understand what did you was trying to say.

The second equation is also wrong, the index on left hand of the equation is different of the index on right hand side.
 
  • Like
Likes   Reactions: topsquark
LCSphysicist said:
I don't even understand what did you was trying to say.
First off, I am trying to write the following in Einstein notation, where ##R=\mathrm{diag}[1,-1,1]##, then ##R^T R = \mathbb{1}_{\dim{R}}##.
 
##R## is a matrix and so it has two indices not one. Is the notation ##R = \text{diag} [1,-1,1]## confusing you? They are the entries of the diagonal of the matrix, rather than the components of a vector in some basis. They are the diagonal components of a second rank tensor in some basis. You use ##\delta_{\alpha \beta}## instead of ##\mathbb{1}_{\alpha \beta}##. Anyway, using Einstein's summation convention you would write

$$
R^T R= \mathbb{1}
$$

as

$$
(R^T)^\alpha_{\;\; \gamma} R^\gamma_{\;\; \beta} = \delta^\alpha _{\;\; \beta} .
$$

or

$$
R^{\;\; \alpha}_ \gamma R^\gamma_{\;\; \beta} = \delta^\alpha _{\;\; \beta} .
$$

or as ##R## is symmetric

$$
R^\alpha_{\;\; \gamma} R^\gamma_{\;\; \beta} = \delta^\alpha _{\;\; \beta} .
$$I suppose, it's not standard, you could introduce the numbers ##r_{(1)}= 1 , r_{(2)} = -1, r_{(3)} = 1## where I have used brackets around the indices to indicate that I'm simply taking them to be numbers rather than components of a tensor in some basis, which is what they actually are. And then write

$$
R^\alpha_{\;\; \beta} = r_{(\beta)} \delta^\alpha_{\;\; \beta}
$$

no summation over ##\beta## is implied. Then you could write

\begin{align*}
R^\alpha_{\;\; \gamma} R^\gamma_{\;\; \beta} & = r_{(\alpha)} r_{(\beta)} \delta^\alpha_{\;\; \gamma} \delta^\gamma_{\;\; \beta}
\nonumber \\
& = r_{(\alpha)} r_{(\beta)} \delta^\alpha_{\;\; \beta}
\nonumber \\
& = r_{(\alpha)}^2 \delta^\alpha_{\;\; \beta}
\nonumber \\
& = \delta^\alpha_{\;\; \beta}
\end{align*}

But this is an abuse of the usual convention.
 
Last edited:
  • Like
Likes   Reactions: vanhees71, topsquark and redtree

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
12
Views
3K
Replies
29
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 10 ·
Replies
10
Views
2K