Is $\sin^2 x$ Less Than $\sin x^2$ for $0 \leq x \leq \sqrt{\frac{\pi}{2}}$?

Click For Summary
SUMMARY

The inequality $\sin^2 x < \sin x^2$ holds true for the interval $0 \leq x \leq \sqrt{\frac{\pi}{2}}$. The proof involves analyzing the derivatives of both functions, where it is established that $\frac{d}{dx}(\sin x^2) > \frac{d}{dx}(\sin^2 x)$ for $0 < x < 1$. Additionally, the smallest positive root of the function $f(x) = \sin^2(x) - \sin(x^2)$ is approximately $1.3644$, which is greater than $\sqrt{\frac{\pi}{2}}$, confirming that the inequality does not hold at that point. The conclusion is supported by the monotonic behavior of both functions within the specified interval.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Knowledge of calculus, specifically differentiation
  • Familiarity with inequalities and monotonic functions
  • Basic numerical methods for finding roots of equations
NEXT STEPS
  • Study the properties of trigonometric functions, focusing on $\sin x$ and $\sin^2 x$
  • Learn about differentiation techniques and their applications in proving inequalities
  • Explore numerical methods for root-finding, such as the Newton-Raphson method
  • Investigate the implications of monotonicity in function analysis
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced trigonometric inequalities and their proofs.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Hi MHB,

When I first saw the problem (Prove that $\sin^2 x<\sin x^2$ for $0\le x\le \sqrt{\dfrac{\pi}{2}}$), I could tell that is one very good problem, but, a good problem usually indicates it is also a very difficult problem and after a few trials using calculus + trigonometry method, I failed and the only conclusion that I could draw by now is one cannot use calculus route in this problem. (But I could be wrong.)

So, I decided to post it here and I would appreciate it if you could tell me what method you would use in your attempt, thanks so much in advance.

Edit:

Oops..now that I redo the problem and I noticed I could use some trick in the calculus method that I overlooked before...so, I finally proved it! Yeah! I will post my solution later.

But, I still hope to see how others would attempt at the problem and I would deeply appreciate it if you could share your solution with me too!
 
Last edited:
Physics news on Phys.org
You originally gave me the weak inequality:

$$\sin^2(x)\le\sin\left(x^2\right)$$ where $$0\le x\le\sqrt{\frac{\pi}{2}}$$

Indeed, we see that the inequality must be weak because of equality at $x=0$. Now, at the other end-point, we find:

$$\sin^2\left(\sqrt{\frac{\pi}{2}}\right)<\sin\left(\frac{\pi}{2}\right)=1$$

Using a numeric technique, we find the smallest positive root of:

$$f(x)=\sin^2(x)-\sin\left(x^2\right)=0$$

is:

$$x\approx1.36441296312529>\sqrt{\frac{\pi}{2}}$$

Given that both functions in the original inequality are monotonic inside the given interval, we may then conclude the inequality is true.
 
MarkFL said:
You originally gave me the weak inequality:

$$\sin^2(x)\le\sin\left(x^2\right)$$ where $$0\le x\le\sqrt{\frac{\pi}{2}}$$

Indeed, we see that the inequality must be weak because of equality at $x=0$. Now, at the other end-point, we find:

$$\sin^2\left(\sqrt{\frac{\pi}{2}}\right)<\sin\left(\frac{\pi}{2}\right)=1$$

Using a numeric technique, we find the smallest positive root of:

$$f(x)=\sin^2(x)-\sin\left(x^2\right)=0$$

is:

$$x\approx1.36441296312529>\sqrt{\frac{\pi}{2}}$$

Given that both functions in the original inequality are monotonic inside the given interval, we may then conclude the inequality is true.

I am not sure this follows: two functions being monotonic on the same interval doesn't mean they intersect at most once, or twice. For instance, $f(x) = x$ and $g(x) = x + \frac{1}{2} \sin x$ are both monotonic yet intersect infinitely many times. I think concavity is required, or am I missing something? Thanks!
 
I agree that monotonicity is not relevant here...given that the two functions are equal at $x=0$, and have no other points of intersection in the interval, and given that:

$$\sin^2\left(\sqrt{\frac{\pi}{2}}\right)<\sin\left(\frac{\pi}{2}\right)=1$$

the result then follows.
 
anemone said:
... I noticed I could use some trick in the calculus method that I overlooked before...so, I finally proved it! Yeah! I will post my solution later.

Hello again, MHB!

When I thought I've solved the problem and hence I edited the original post to mention so, I didn't, it only dawned on me hours ago that my solution is flawed.:(

MarkFL said:
You originally gave me the weak inequality:

$$\sin^2(x)\le\sin\left(x^2\right)$$ where $$0\le x\le\sqrt{\frac{\pi}{2}}$$

Indeed, we see that the inequality must be weak because of equality at $x=0$. Now, at the other end-point, we find:

$$\sin^2\left(\sqrt{\frac{\pi}{2}}\right)<\sin\left(\frac{\pi}{2}\right)=1$$

Using a numeric technique, we find the smallest positive root of:

$$f(x)=\sin^2(x)-\sin\left(x^2\right)=0$$

is:

$$x\approx1.36441296312529>\sqrt{\frac{\pi}{2}}$$

Given that both functions in the original inequality are monotonic inside the given interval, we may then conclude the inequality is true.

Thanks MarkFL for your reply, I suppose you're right, if we have proved the smallest positive root of $$f(x)=\sin^2(x)-\sin\left(x^2\right)=0$$ is $$x\approx1.36441296312529>\sqrt{\frac{\pi}{2}}$$, then the inequality holds true in that given interval.(Yes)

And yes, the problem should be a weak inequality, I will edit my original post. Thanks for catching this!
 
Hi MHB,

I was told by someone his way of proving this particular inequality to be right for that given interval and I thought it would be nice if I share it here. After all, my philosophy is I want to share all that I can give!:o

[TABLE="class: grid, width: 800"]
[TR]
[TD]For $x=0$,
we see that $\sin^2 0=\sin 0^2=0$.

[/TD]
[TD]For $0<x< 1$, if we can show that the derivative of $\sin x^2$ is greater than the derivative of $\sin^2 x$ for that interval, then, of course $\sin x^2>\sin^2 x$.

$\dfrac{d}{dx}(\sin x^2)=\color{yellow}\bbox[5px,green]{2x}\color{yellow}\bbox[5px,red]{\cos x^2}$

$\dfrac{d}{dx}(\sin^2 x)= \color{yellow}\bbox[5px,green]{2\sin x}\color{yellow}\bbox[5px,red]{\cos x}$

It's well known that $x>\sin x$ in $\left(0,\,\dfrac{\pi}{2}\right)$, therefore, we have that $\color{yellow}\bbox[5px,green]{2x}\color{black}{>}\color{yellow}\bbox[5px,green]{2\sin x}$.

It's also obvious that $\color{yellow}\bbox[5px,red]{\cos x^2}\color{black}{>}\color{yellow}\bbox[5px,red]{\cos x}$ for $0<x< 1$.

Hence, we can say that $\sin x^2>\sin^2 x$ in $0<x< 1$.[/TD]
[TD]For $1<x<\sqrt{\dfrac{\pi}{2}}$, it's easy to see that $\sin x^2>\sin^2 x$.[/TD]
[/TR]
[/TABLE]

Therefore, we can conclude that $\sin x^2\ge\sin^2 x$ in $1<x<\sqrt{\dfrac{\pi}{2}}$.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K