Is the Book Right? Examining Conservation of Momentum

AI Thread Summary
The discussion centers on the conservation of momentum in a scenario involving a moving carriage and a student. The proposed solution calculates the speed of the carriage after the student jumps out, using momentum equations. The original book's solution is questioned for potentially neglecting the relative velocity aspect. Participants highlight the importance of proper notation and the correct application of momentum principles. Ultimately, the poster acknowledges a mistake in their calculations after receiving feedback.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
This is a problem from 200 Puzzling Physics Problems.
A student and ticket collector of mass m are in a stationary railway carriage of mass M. The collector realises the student has no ticket, so the student runs towards the end of the carriage, and the collector chases after him with speed v relative to the carriage. The student stops at the end of the carriage and jumps out. Find the velocity of the carriage when the collector stops at the open end of the carriage and watches the student escape.
Relevant Equations
Conservation of Momentum
My proposed solution:

When the student stops at the end, suppose the carriage is moving at speed u.
0 = (M+2m)u - m(v - u)
==> u = mv/ M+3m

After jumping out, the total momentum of the Carriage + collector system is 0 - mu = -m^2v/ M+3m.

By conservation of momentum for the Carriage + collector system, at the time when the collector stops at the open end:

-m^2v/ M+3m = 0 + (M+m)V, where V is the final velocity of the carriage + collector.

V = -m^2v/ (M+3m)(M+m)

The book (200 Puzzling Phys Problems) writes that the speed of the carriage when the student has reached the end and stopped (but not yet jumped) is u = mv/M+2m.

I suppose this is from the Conserve momentum equation: (M+2m)u = mv. Doesn't this forget the fact that v is a relative velocity?

Is the book right, and why am I wrong?

Thank you!
 
Physics news on Phys.org
phantomvommand said:
When the student stops at the end, suppose the carriage is moving at speed u.
0 = (M+2m)u - m(v - u)
==> u = mv/ M+3m
1) your lack of using brackets will cause errors -- if not now, then later
2) Your momentum balance should not have the ticket collector on both sides, but: ticket collector on one side and carriage + student on the other.

##\ ##
 
  • Like
Likes phantomvommand
BvU said:
1) your lack of using brackets will cause errors -- if not now, then later
2) Your momentum balance should not have the ticket collector on both sides, but: ticket collector on one side and carriage + student on the other.

##\ ##
I see my mistake now, thank you very much!
 
Thread 'Minimum mass of a block'
Here we know that if block B is going to move up or just be at the verge of moving up ##Mg \sin \theta ## will act downwards and maximum static friction will act downwards ## \mu Mg \cos \theta ## Now what im confused by is how will we know " how quickly" block B reaches its maximum static friction value without any numbers, the suggested solution says that when block A is at its maximum extension, then block B will start to move up but with a certain set of values couldn't block A reach...
TL;DR Summary: Find Electric field due to charges between 2 parallel infinite planes using Gauss law at any point Here's the diagram. We have a uniform p (rho) density of charges between 2 infinite planes in the cartesian coordinates system. I used a cube of thickness a that spans from z=-a/2 to z=a/2 as a Gaussian surface, each side of the cube has area A. I know that the field depends only on z since there is translational invariance in x and y directions because the planes are...
Thread 'Calculation of Tensile Forces in Piston-Type Water-Lifting Devices at Elevated Locations'
Figure 1 Overall Structure Diagram Figure 2: Top view of the piston when it is cylindrical A circular opening is created at a height of 5 meters above the water surface. Inside this opening is a sleeve-type piston with a cross-sectional area of 1 square meter. The piston is pulled to the right at a constant speed. The pulling force is(Figure 2): F = ρshg = 1000 × 1 × 5 × 10 = 50,000 N. Figure 3: Modifying the structure to incorporate a fixed internal piston When I modify the piston...
Back
Top