Is the Book Right? Examining Conservation of Momentum

Click For Summary
The discussion centers on the conservation of momentum in a scenario involving a moving carriage and a student. The proposed solution calculates the speed of the carriage after the student jumps out, using momentum equations. The original book's solution is questioned for potentially neglecting the relative velocity aspect. Participants highlight the importance of proper notation and the correct application of momentum principles. Ultimately, the poster acknowledges a mistake in their calculations after receiving feedback.
phantomvommand
Messages
287
Reaction score
39
Homework Statement
This is a problem from 200 Puzzling Physics Problems.
A student and ticket collector of mass m are in a stationary railway carriage of mass M. The collector realises the student has no ticket, so the student runs towards the end of the carriage, and the collector chases after him with speed v relative to the carriage. The student stops at the end of the carriage and jumps out. Find the velocity of the carriage when the collector stops at the open end of the carriage and watches the student escape.
Relevant Equations
Conservation of Momentum
My proposed solution:

When the student stops at the end, suppose the carriage is moving at speed u.
0 = (M+2m)u - m(v - u)
==> u = mv/ M+3m

After jumping out, the total momentum of the Carriage + collector system is 0 - mu = -m^2v/ M+3m.

By conservation of momentum for the Carriage + collector system, at the time when the collector stops at the open end:

-m^2v/ M+3m = 0 + (M+m)V, where V is the final velocity of the carriage + collector.

V = -m^2v/ (M+3m)(M+m)

The book (200 Puzzling Phys Problems) writes that the speed of the carriage when the student has reached the end and stopped (but not yet jumped) is u = mv/M+2m.

I suppose this is from the Conserve momentum equation: (M+2m)u = mv. Doesn't this forget the fact that v is a relative velocity?

Is the book right, and why am I wrong?

Thank you!
 
Physics news on Phys.org
phantomvommand said:
When the student stops at the end, suppose the carriage is moving at speed u.
0 = (M+2m)u - m(v - u)
==> u = mv/ M+3m
1) your lack of using brackets will cause errors -- if not now, then later
2) Your momentum balance should not have the ticket collector on both sides, but: ticket collector on one side and carriage + student on the other.

##\ ##
 
  • Like
Likes phantomvommand
BvU said:
1) your lack of using brackets will cause errors -- if not now, then later
2) Your momentum balance should not have the ticket collector on both sides, but: ticket collector on one side and carriage + student on the other.

##\ ##
I see my mistake now, thank you very much!
 
Thread 'Correct statement about size of wire to produce larger extension'
The answer is (B) but I don't really understand why. Based on formula of Young Modulus: $$x=\frac{FL}{AE}$$ The second wire made of the same material so it means they have same Young Modulus. Larger extension means larger value of ##x## so to get larger value of ##x## we can increase ##F## and ##L## and decrease ##A## I am not sure whether there is change in ##F## for first and second wire so I will just assume ##F## does not change. It leaves (B) and (C) as possible options so why is (C)...

Similar threads

  • · Replies 17 ·
Replies
17
Views
827
  • · Replies 27 ·
Replies
27
Views
958
Replies
21
Views
2K
  • · Replies 4 ·
Replies
4
Views
867
Replies
7
Views
2K
Replies
28
Views
2K
Replies
7
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
2K