AndreasC
Gold Member
- 555
- 317
I am correcting my previous post, since I made a small error regarding the definitions of the operators. The ladder operators are (x+ip) and (x-ip). My point still stands as long as we look at the Hamiltonian:
$$ H = (x-ip)(x+ip)/2 $$
...And carry out the same procedure. The end result is indeed N. The calculation @PeterDonis was trying to carry out gives ##H=(p^2+x^2+i[x,p])/2##, where a factor ##i[x,p]/2=-1/2## is added to the previous Hamiltonian, and thus eliminates the 1/2 "zero point energy" term, which definitely seems to solve many issues for me.
Now that I think about it, we could actually have a little more fun with it and come up with whatever "zero point energy" we like, by noticing that terms involving ##(x-ip)(x+ip)/2## add 0 to the number operator, while terms involving ##(x+ip)(x-ip)/2## add 1, yet classically they are all the same. One could write the Hamiltonian as:
$$ H = c(x+ip)(x-ip)/2 + (1-c)(x-ip)(x+ip)/2 $$
Which of course classically is just p^2+x^2, but when you quantize, you get N+c. So I wouldn't take the harmonic oscillator seriously, to answer the question of @Vanadium 50 .
$$ H = (x-ip)(x+ip)/2 $$
...And carry out the same procedure. The end result is indeed N. The calculation @PeterDonis was trying to carry out gives ##H=(p^2+x^2+i[x,p])/2##, where a factor ##i[x,p]/2=-1/2## is added to the previous Hamiltonian, and thus eliminates the 1/2 "zero point energy" term, which definitely seems to solve many issues for me.
Now that I think about it, we could actually have a little more fun with it and come up with whatever "zero point energy" we like, by noticing that terms involving ##(x-ip)(x+ip)/2## add 0 to the number operator, while terms involving ##(x+ip)(x-ip)/2## add 1, yet classically they are all the same. One could write the Hamiltonian as:
$$ H = c(x+ip)(x-ip)/2 + (1-c)(x-ip)(x+ip)/2 $$
Which of course classically is just p^2+x^2, but when you quantize, you get N+c. So I wouldn't take the harmonic oscillator seriously, to answer the question of @Vanadium 50 .
Last edited: