HallsofIvy
Science Advisor
Homework Helper
- 42,895
- 984
SW VandeCarr said:Simply that if every subset of T (as 'morphism' says in post 24) is dense in itself, then the empty set must be dense in itself as a subset of T. Since the empty set contains no points of the point set T, this would appear to me to be a contradiction.
Or, a little more generally, a set X is dense in set Y if and only if Y is contained in the closure of Y. As has been said repeatedly, every set, no matter what it is a subset of, is dense in itself because every set is contained in its own closure. The empty set is itself a closed set: The closure of the empty set is itself which certainly contains itself. That has nothing at all to do with whether it contains any points.quadraphonics said:No, the usual definition of a dense set is: "If set X is dense in set Y, any point in set Y can be 'well-approximated' by a point in set X". If set Y is the empty set, that is trivially true, since there are no points in Y to worry about.