Is the Function f a Homomorphism for Symmetry Group of a Circle?

  • Context: MHB 
  • Thread starter Thread starter kalish1
  • Start date Start date
  • Tags Tags
    Group Symmetry
Click For Summary

Discussion Overview

The discussion revolves around whether the function f defined from the symmetry group of a circle to the set {1, -1} is a homomorphism. Participants explore the properties of symmetries, specifically rotations and reflections, and their implications for the function's behavior. The scope includes theoretical aspects of group homomorphisms and the structure of symmetry groups.

Discussion Character

  • Debate/contested
  • Mathematical reasoning

Main Points Raised

  • Some participants propose that f is a homomorphism based on checking the condition f(xy) = f(x)f(y) for various cases of x and y being rotations or reflections.
  • Others argue that the initial approach may have misunderstood the group operation in the symmetry group, suggesting a need for clarification on the operations involved.
  • A later reply questions the applicability of the sign homomorphism to the infinite case of the symmetry group of a circle, noting that the sign is typically defined for finite sets.
  • Some participants express agreement with the solution presented in post #3, while others emphasize the need for specific definitions of rotations and reflections to validate the claims made.
  • One participant suggests that proving the relationships between compositions of rotations and reflections requires a specific "form" of these transformations, proposing linear map definitions for clarity.
  • Another participant mentions that the problem can be viewed as a special case of a known homomorphism related to linear plane isometries, hinting at a broader mathematical context.

Areas of Agreement / Disagreement

Participants express a mix of agreement and disagreement regarding the validity of the proposed homomorphism. While some support the approach in post #3, others raise concerns about the definitions and operations involved, indicating that the discussion remains unresolved.

Contextual Notes

There are limitations regarding the definitions of rotations and reflections, as well as the assumptions about the group operations. The discussion also highlights the complexity of applying concepts from finite groups to an infinite context.

kalish1
Messages
79
Reaction score
0
I have a question that I have approached, but want to check if I'm on the right track.

Let G denote the group of symmetries of a circle. There are infinitely many reflections and rotations. There are no elements besides reflections and rotations. The identity element is the rotation by zero degrees. Let H denote the subgroup of H consisting of only the rotations.

Question: Define f: G--> {1,-1} by f(x) = 1 if x is a rotation and f(x) = -1 if x is a reflection. Is f a homomorphism?

What I did was check if f(xy)=f(x)f(y). So f((-1)*1)=f(-1)f(1)=-1, and f((1)*1)=f(1)f(1)=1, etc. It all checks out, so f is a homomorphism.

Did I do it right? Thanks!
 
Physics news on Phys.org
kalish said:
I have a question that I have approached, but want to check if I'm on the right track.

Let G denote the group of symmetries of a circle. There are infinitely many reflections and rotations. There are no elements besides reflections and rotations. The identity element is the rotation by zero degrees. Let H denote the subgroup of H consisting of only the rotations.

Question: Define f: G--> {1,-1} by f(x) = 1 if x is a rotation and f(x) = -1 if x is a reflection. Is f a homomorphism?

What I did was check if f(xy)=f(x)f(y). So f((-1)*1)=f(-1)f(1)=-1, and f((1)*1)=f(1)f(1)=1, etc. It all checks out, so f is a homomorphism.

Did I do it right? Thanks!
A homomorphism between two groups is a function $f:G\to H$ that satisfies
$$f(g_1\cdot_Gg_2)=f(g_1)\cdot_Hf(g_2)$$
where $g_1,g_2\in G$, $\cdot_G$ is the group operation in G, and $\cdot_H$ is the group operation in H. The way you performed your calculations looks like you have mistaken the group operation in the symmetry group to be multiplication.
 
So... is this the correct approach?

We need to show that f(x) f(y) = f(xy) for any x, y in G.

We prove this by cases:
(i) x and y are rotations. Then, xy is also a rotation.
So, f(x) f(y) = 1 * 1 = 1 = f(xy).

(ii) x and y are reflections. Then, xy is a rotation.
So, f(x) f(y) = -1 * -1 = 1 = f(xy).

(iii) x is a reflection and y is a rotation. Then, xy is also a reflection.
So, f(x) f(y) = -1 * 1 = -1 = f(xy).

(iv) x is a rotation and y is a reflection. Then, xy is also a reflection.
So, f(x) f(y) = -1 * 1 = -1 = f(xy).
 
I don't know what the best way to solve this problem is. What I would do is the following: first, we know that the sign homomorphism which maps each permutation to its sign, is indeed a homomorphism. Now try to prove that the symmetry group of a circle is isomorphic to a permutation group (which turns out to be of arbitrary large degree).
 
eddybob123 said:
What I would do is the following: first, we know that the sign homomorphism which maps each permutation to its sign, is indeed a homomorphism.
Isn't the sign of a permutation defined only for finite sets?

eddybob123 said:
Now try to prove that the symmetry group of a circle is isomorphic to a permutation group (which turns out to be of arbitrary large degree).
There are definitely more permutations (i.e., bijections) of a circle than rotations and symmetries. Besides, this approach would require proving that the sign of a symmetry is -1 and the sign of a rotation is 1 or vice versa.

In my opinion, the solution in post #3 is fine.
 
Evgeny.Makarov said:
In my opinion, the solution in post #3 is fine.
I agree
 
Evgeny.Makarov said:
Isn't the sign of a permutation defined only for finite sets?

eddybob123 said:
Now try to prove that the symmetry group of a circle is isomorphic to a permutation group (which turns out to be of arbitrary large degree).
There are definitely more permutations (i.e., bijections) of a circle than rotations and symmetries. Besides, this approach would require proving that the sign of a symmetry is -1 and the sign of a rotation is 1 or vice versa.

In my opinion, the solution in post #3 is fine.

I would also agree with this, PROVIDED:

you can PROVE that:

a) two rotations composed yield a rotation
b) a rotation and reflection composed in any order yield a reflection
c) two reflections composed yield a rotation.

In my humble opinion, one needs a specific "form" of rotations and reflections to do this. One possible approach:

DEFINE a rotation as a linear map:

$T(x,y) = (x\cos\alpha - y\sin\alpha ,x\sin\alpha + y\cos\alpha)$

for some real number $\alpha \in [0,2\pi)$

Similarly, DEFINE a reflection as:

$T \circ R$, where:

$T$ is a rotation, and; $R(x,y) = (x,-y)$

(other definitions are possible, be aware of this).

Note that to prove (a) through (c) using these definitions one must find some "angle" that works for the composition.

********

Also, in my humble opinion, the EASIEST way to prove the original assertion of post #1 is by noting this is just a special case of the homomorphism:

$\det:\text{GL}_2(\Bbb R) \to \Bbb R \setminus\{0\}$

restricted to the subgroup $\text{O}_2(\Bbb R)$ consisting of all linear plane isometries (which of necessity must map any circle centered at the origin (including the unit circle) to itself), using the multiplicative property of the determinant map.
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 26 ·
Replies
26
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 1 ·
Replies
1
Views
741
  • · Replies 4 ·
Replies
4
Views
735
  • · Replies 14 ·
Replies
14
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K