MHB Is the Orthogonal Complement of an Invariant Subspace Itself Invariant?

Click For Summary
The discussion centers on proving that the orthogonal complement \(U^\perp\) of an invariant subspace \(U\) with respect to a Hermitian transformation is itself invariant. The user presents a proof involving the associated bilinear form \(B\) and the Hermitian transformation \(f\), demonstrating that \(f(U^\perp) \subset U^\perp\) by showing that \(B(f(u'), u) = 0\) for all \(u \in U\) and \(u' \in U^\perp\). The proof relies on the self-adjoint property of \(f\) and the invariance of \(U\). Other participants confirm the correctness of the user's reasoning. The discussion effectively clarifies the relationship between invariant subspaces and their orthogonal complements in the context of Hermitian transformations.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question with my answer. I would be really grateful if somebody could confirm whether my answer is correct. :)

Problem:

Prove that the orthogonal compliment \(U^\perp\) to an invariant subspace \(U\) with respect to a Hermitian transformation is itself invariant.

My Answer:

Let \(B\) denote the associated bilinear form, and \(f\) denote the Hermitian transformation. Then we have to show that, \(f(U^\perp)\subset U^\perp\). That is,

\[B(f(u'),\,u)=0\]

for all \(u\in U\) where \(u'\in U^\perp\).

Take any \(u'\in U^\perp\). Then for any \(u\in U\),

\[B(f(u'),\,u)=B(u',\,f^*(u))\]

Now since \(f\) is Hermitian (self-adjoint) we have, \(f=f^*\). Therefore,

\[B(f(u'),\,u)=B(u',\,f(u))\]

Now since \(U\) is an invariant subspace, \(f(u)\in f(U)\subset U\). Therefore,

\[B(f(u'),\,u)=B(u',\,f(u))=0\]

Am I correct? :)
 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

Here's a question with my answer. I would be really grateful if somebody could confirm whether my answer is correct. :)

Problem:

Prove that the orthogonal compliment \(U^\perp\) to an invariant subspace \(U\) with respect to a Hermitian transformation is itself invariant.

My Answer:

Let \(B\) denote the associated bilinear form, and \(f\) denote the Hermitian transformation. Then we have to show that, \(f(U^\perp)\subset U^\perp\). That is,

\[B(f(u'),\,u)=0\]

for all \(u\in U\) where \(u'\in U^\perp\).

Take any \(u'\in U^\perp\). Then for any \(u\in U\),

\[B(f(u'),\,u)=B(u',\,f^*(u))\]

Now since \(f\) is Hermitian (self-adjoint) we have, \(f=f^*\). Therefore,

\[B(f(u'),\,u)=B(u',\,f(u))\]

Now since \(U\) is an invariant subspace, \(f(u)\in f(U)\subset U\). Therefore,

\[B(f(u'),\,u)=B(u',\,f(u))=0\]

Am I correct? :)
Yes. :)
 
Opalg said:
Yes. :)

Thanks for the confirmation. :)
 
Thread 'How to define a vector field?'
Hello! In one book I saw that function ##V## of 3 variables ##V_x, V_y, V_z## (vector field in 3D) can be decomposed in a Taylor series without higher-order terms (partial derivative of second power and higher) at point ##(0,0,0)## such way: I think so: higher-order terms can be neglected because partial derivative of second power and higher are equal to 0. Is this true? And how to define vector field correctly for this case? (In the book I found nothing and my attempt was wrong...

Similar threads

Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K