MHB Is the Projection Operator Self-Adjoint Only with Orthogonal Subspaces?

  • Thread starter Thread starter smile1
  • Start date Start date
  • Tags Tags
    Transformation
smile1
Messages
18
Reaction score
0
Hello everyone

I hope someone can check the solution for me.

Here is the problem:
Let $V=V_1\oplus V_2$, $f$ is the projection of $V$ onto $V_1$ along $V_2$( i.e. if $v=v_1+v_2, v_i\in V_i$ then $f(v)=v_1$). Prove that $f$ is self-adjoint iff $<V_1,V_2>=0$

my solution is this:
proof:"$\Rightarrow$"let $v_1\in V_1, v_2\in V_2$,
then $<f(v_1),v_2>=<v_1,f*(v_2)>=<v_1,f(v_2)>$, since if $f$ is self-adjoint,
then $f(v_2)=0, f(v_1)=v_1$, it follows that $<v_1,v_2>=<v_1,0>=0$,
hence $<v_1,v_2>=0$

"$\Leftarrow$" let $v_1\in V_1, v_2\in V_2$,
$<f(v_1),v_2>=<v_1,v_2>=0$, since $<v_1,v_2>=0$
$<v_1,f(v_2)>=<v_1,0>=0$
hence $<f(v_1),v_2>=<v_1,f(v_2)>$, $f$ is self adjoint.

It seems like something is wrong with my proof, but I really don't know. Hope someone can check it.

Thanks
 
Physics news on Phys.org
smile said:
Hello everyone

I hope someone can check the solution for me.

Here is the problem:
Let $V=V_1\oplus V_2$, $f$ is the projection of $V$ onto $V_1$ along $V_2$( i.e. if $v=v_1+v_2, v_i\in V_i$ then $f(v)=v_1$). Prove that $f$ is self-adjoint iff $<V_1,V_2>=0$

my solution is this:
proof:"$\Rightarrow$"let $v_1\in V_1, v_2\in V_2$,
then $<f(v_1),v_2>=<v_1,f*(v_2)>=<v_1,f(v_2)>$, since if $f$ is self-adjoint,
then $f(v_2)=0, f(v_1)=v_1$, it follows that $<v_1,v_2>=<v_1,0>=0$,
hence $<v_1,v_2>=0$

"$\Leftarrow$" let $v_1\in V_1, v_2\in V_2$,
$<f(v_1),v_2>=<v_1,v_2>=0$, since $<v_1,v_2>=0$
$<v_1,f(v_2)>=<v_1,0>=0$
hence $<f(v_1),v_2>=<v_1,f(v_2)>$, $f$ is self adjoint.

It seems like something is wrong with my proof, but I really don't know. Hope someone can check it.
The "$\Rightarrow$" proof is fine. To show the converse implication, you need to take two vectors, $v_1\oplus v_2$ and $w_1\oplus w_2$ say, in $V_1\oplus V_2$, and check that $\langle f(v_1\oplus v_2),w_1\oplus w_2\rangle = \langle v_1\oplus v_2,f(w_1\oplus w_2)\rangle.$
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top