Is the Projection Operator Self-Adjoint Only with Orthogonal Subspaces?

  • Context: MHB 
  • Thread starter Thread starter smile1
  • Start date Start date
  • Tags Tags
    Transformation
Click For Summary
SUMMARY

The discussion centers on the self-adjointness of the projection operator \( f \) from a vector space \( V \) onto a subspace \( V_1 \) along another subspace \( V_2 \). It is established that \( f \) is self-adjoint if and only if the inner product \( \langle V_1, V_2 \rangle = 0 \). The proof provided confirms the forward implication, while the converse requires verification using vectors from both subspaces. The key takeaway is the necessity of orthogonality between \( V_1 \) and \( V_2 \) for \( f \) to be self-adjoint.

PREREQUISITES
  • Understanding of vector spaces and subspaces
  • Knowledge of projection operators in linear algebra
  • Familiarity with inner product spaces
  • Concept of self-adjoint operators
NEXT STEPS
  • Study the properties of projection operators in linear algebra
  • Learn about self-adjoint operators and their implications in functional analysis
  • Explore the concept of orthogonal complements in vector spaces
  • Investigate the relationship between inner products and orthogonality
USEFUL FOR

Mathematicians, students of linear algebra, and anyone interested in the properties of linear transformations and their applications in functional analysis.

smile1
Messages
18
Reaction score
0
Hello everyone

I hope someone can check the solution for me.

Here is the problem:
Let $V=V_1\oplus V_2$, $f$ is the projection of $V$ onto $V_1$ along $V_2$( i.e. if $v=v_1+v_2, v_i\in V_i$ then $f(v)=v_1$). Prove that $f$ is self-adjoint iff $<V_1,V_2>=0$

my solution is this:
proof:"$\Rightarrow$"let $v_1\in V_1, v_2\in V_2$,
then $<f(v_1),v_2>=<v_1,f*(v_2)>=<v_1,f(v_2)>$, since if $f$ is self-adjoint,
then $f(v_2)=0, f(v_1)=v_1$, it follows that $<v_1,v_2>=<v_1,0>=0$,
hence $<v_1,v_2>=0$

"$\Leftarrow$" let $v_1\in V_1, v_2\in V_2$,
$<f(v_1),v_2>=<v_1,v_2>=0$, since $<v_1,v_2>=0$
$<v_1,f(v_2)>=<v_1,0>=0$
hence $<f(v_1),v_2>=<v_1,f(v_2)>$, $f$ is self adjoint.

It seems like something is wrong with my proof, but I really don't know. Hope someone can check it.

Thanks
 
Physics news on Phys.org
smile said:
Hello everyone

I hope someone can check the solution for me.

Here is the problem:
Let $V=V_1\oplus V_2$, $f$ is the projection of $V$ onto $V_1$ along $V_2$( i.e. if $v=v_1+v_2, v_i\in V_i$ then $f(v)=v_1$). Prove that $f$ is self-adjoint iff $<V_1,V_2>=0$

my solution is this:
proof:"$\Rightarrow$"let $v_1\in V_1, v_2\in V_2$,
then $<f(v_1),v_2>=<v_1,f*(v_2)>=<v_1,f(v_2)>$, since if $f$ is self-adjoint,
then $f(v_2)=0, f(v_1)=v_1$, it follows that $<v_1,v_2>=<v_1,0>=0$,
hence $<v_1,v_2>=0$

"$\Leftarrow$" let $v_1\in V_1, v_2\in V_2$,
$<f(v_1),v_2>=<v_1,v_2>=0$, since $<v_1,v_2>=0$
$<v_1,f(v_2)>=<v_1,0>=0$
hence $<f(v_1),v_2>=<v_1,f(v_2)>$, $f$ is self adjoint.

It seems like something is wrong with my proof, but I really don't know. Hope someone can check it.
The "$\Rightarrow$" proof is fine. To show the converse implication, you need to take two vectors, $v_1\oplus v_2$ and $w_1\oplus w_2$ say, in $V_1\oplus V_2$, and check that $\langle f(v_1\oplus v_2),w_1\oplus w_2\rangle = \langle v_1\oplus v_2,f(w_1\oplus w_2)\rangle.$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 45 ·
2
Replies
45
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
5
Views
2K
Replies
1
Views
1K