MHB Is the solution to the quadratic inequality (-x + 6)/(x - 2) < 0?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Quadratic
mathdad
Messages
1,280
Reaction score
0
Solve the quadratic inequality.

2x/(x - 2) < 3

Multiply both sides by (x - 2).

[(x - 2)][2x/(x - 2)] < 3(x - 2)

2x < 3x - 6

2x - 3x < -6

-x < -6

x > 6

Our only end point is x = 6.

<----------(6)---------->

For (-infinity, 6), let x = 0. In this interval, we get false.

For (6, infinity), let x = 7. In this interval, we get true.

Test x = 6.

2(6)/(6 - 2) < 3

12/4 < 3

3 < 3...false statement. We exclude x = 6 as part of the solution.

Solution:

(6, infinity)

Correct?
 
Mathematics news on Phys.org
You don't want to multiply an inequality by an expression whose sign is unknown...arrange everything to one side and then get your critical values from the roots of the numerator and denominator. :D
 
Are you saying the correct set up is

2x/(x - 2) - 3 < 0?
 
RTCNTC said:
Are you saying the correct set up is

2x/(x - 2) - 3 < 0?

Yes, now combine terms on the LHS...:D
 
Cool. I will work on this quadratic inequality later. I sure wish I had a better understanding of mathematics.
 
2x/(x - 2) - 3 < 0

After combining, I got the following:

(-x + 6)/(x - 2) < 0

-x + 6 = 0

x = 6

x - 2 = 0

x = 2

<--------(2)--------(6)---------->

When x = 6, we get 0/(x - 2) < 0.

When x = 2, we get undefined.

We must exclude 2 and 6.

For (-infinity, 2), let x = 0. Here we get a true statement.

For (2, 6), let x = 3. Here we get a false statement.

For (6, infinity), let x = 7. Here we get a true statement.

Solution: (-infinity, 2) U (6, infinity)

Correct?
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top