MHB Is There a Solution to the Challenge of Inequality?

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Given that $0<k,\,l,\,m,\,n<1$ and $klmn=(1-k)(1-l)(1-m)(1-n)$, show that $(k+l+m+n)-(k+m)(l+n)\ge1$.
 
Mathematics news on Phys.org
I´m so sorry for my mistake: A minus-sign was overlooked, and the coupling of the four variables k, l, m, n is not obvious. Sorry!

Given:
\[klmn = (1-k)(1-l)(1-m)(1-n),\: \: \: \: 0 < k,l,m,n < 1\]

This equality is only possible, if LHS and RHS have equal factors* (not necessarily in the same order).

\[klmn = (1-k)(1-l)(1-m)(1-n)\\\\ =1 - (k+l+m+n)+(k+m)(l+n)+mk+nl-(klm+kln+kmn+lmn)+klmn\\\\ \Rightarrow (k+l+m+n)-(k+m)(l+n)=1+mk(1-n-l)+nl(1-m-k)\]

Using (*): WLOG I can take $k = 1-l$, and $n = 1-m$. Thus, the variables are coupled pairwise. I could as well take $k = 1-n$ and $l = 1-m$. The outcome will be exactly the same. But taking $k = 1-m$ and $l = 1-n$ doesn´t work. I don´t know why ...
(- well, it works, because the $\ge$ is still valid).\[(k+l+m+n)-(k+m)(l+n)=1+mk((1-l)-n)+nl(1-m-k)\\\\ =1+mk(k-(1-m))+(1-m)(1-k)(1-m-k)\\\\ =1-mk(1-m-k)+(1-m)(1-k)(1-m-k)\\\\ =1+(1-m-k)(1-m-k+mk-mk)\\\\ =1+(1-m-k)^2 \geq 1\]
 
Last edited:
lfdahl said:
I´m so sorry for my mistake: A minus-sign was overlooked, and the coupling of the four variables k, l, m, n is not obvious. Sorry!

Hey lfdahl, seriously, there's no need to apologize!(Smile) And everything is fine and perfect with your valid proof!:cool:

lfdahl said:
Given:
\[klmn = (1-k)(1-l)(1-m)(1-n),\: \: \: \: 0 < k,l,m,n < 1\]

This equality is only possible, if LHS and RHS have equal factors* (not necessarily in the same order).

\[klmn = (1-k)(1-l)(1-m)(1-n)\\\\ =1 - (k+l+m+n)+(k+m)(l+n)+mk+nl-(klm+kln+kmn+lmn)+klmn\\\\ \Rightarrow (k+l+m+n)-(k+m)(l+n)=1+mk(1-n-l)+nl(1-m-k)\]

Using (*): WLOG I can take $k = 1-l$, and $n = 1-m$. Thus, the variables are coupled pairwise. I could as well take $k = 1-n$ and $l = 1-m$. The outcome will be exactly the same. But taking $k = 1-m$ and $l = 1-n$ doesn´t work. I don´t know why ...
(- well, it works, because the $\ge$ is still valid).\[(k+l+m+n)-(k+m)(l+n)=1+mk((1-l)-n)+nl(1-m-k)\\\\ =1+mk(k-(1-m))+(1-m)(1-k)(1-m-k)\\\\ =1-mk(1-m-k)+(1-m)(1-k)(1-m-k)\\\\ =1+(1-m-k)(1-m-k+mk-mk)\\\\ =1+(1-m-k)^2 \geq 1\]

Well done, lfdahl! Your proof is different from the one that I saw online somewhere, hence, I will post it here to share with the community:

We're given $klmn=(1-k)(1-l)(1-m)(1-n)$, we can rewrite it as $\dfrac{km}{(1-k)(1-m)}=\dfrac{(1-l)(1-n)}{ln}$ and this is also equivalent to $\dfrac{(k+m)-1}{(1-k)(1-m)}=\dfrac{1-(l+n)}{ln}$.

Recall that if we have $a=b$, then $ab= a^2=b^2\ge0$.

Hence, $\dfrac{(k+m)-1}{(1-k)(1-m)}\cdot\dfrac{1-(l+n)}{ln}\ge 0$.

Since $0<k,\,l,\,m,\,n<1$, we see that the product of the terms in the denominator greater than zero, this yields:

$((k+m)-1)(1-(l+n))\ge0$

$k+m-(k+m)(l+n)-1+l+n\ge0$

$k+m+l+n-(k+m)(l+n)\ge1$ (Q.E.D.)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top