MHB Is There a Strategy for Finding Primitive Roots of 2p^n If There is One for p^n?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Primitive Root
Click For Summary
If there is a primitive root for p^n, then there exists a primitive root for 2p^n, particularly if the primitive root r is odd. If r is not odd, then r + p^n can be shown to be a primitive root of 2p^n. The discussion explores the conditions under which moduli can be combined to demonstrate this relationship. Specifically, it highlights that if certain congruences hold true, they can be combined when the moduli are coprime. The overall strategy revolves around leveraging properties of primitive roots and modular arithmetic.
Poirot1
Messages
243
Reaction score
0
let p be an odd prime. Show that if there is a primitive root of p^n, then there is a primitive root of 2p^n. Strategy?
 
Mathematics news on Phys.org
Re: primitive root

Poirot said:
let p be an odd prime. Show that if there is a primitive root of p^n, then there is a primitive root of 2p^n. Strategy?

Let $r$ be a primitive root of $p^n$. If $r$ is odd then we can show that $r$ is a primitive root of $2p^n$. If $r$ ain't odd then it can be shown that $r+p^n$ is a primitive root of $2p^n$.
 
Re: primitive root

caffeinemachine said:
Let $r$ be a primitive root of $p^n$. If $r$ is odd then we can show that $r$ is a primitive root of $2p^n$. If $r$ ain't odd then it can be shown that $r+p^n$ is a primitive root of $2p^n$.

Ok let's first assume r is odd. Then if d divides g(p^n), we have r^d=1 (mod p^n) iff
d = g(p^n). But g(p^n)=g(2p^n). r is odd so r^d=1 (mod 2). Can we somehow combine moduli?
 
Re: primitive root

Poirot said:
Can we somehow combine moduli?
Under certain conditions yes.

Say $x\equiv a\pmod{m}, x\equiv a\pmod{n}$ and gcd$(m,n)=1$. Then $x\equiv a\pmod{mn}$
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K