MHB Is There a Strategy for Finding Primitive Roots of 2p^n If There is One for p^n?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Primitive Root
Poirot1
Messages
243
Reaction score
0
let p be an odd prime. Show that if there is a primitive root of p^n, then there is a primitive root of 2p^n. Strategy?
 
Mathematics news on Phys.org
Re: primitive root

Poirot said:
let p be an odd prime. Show that if there is a primitive root of p^n, then there is a primitive root of 2p^n. Strategy?

Let $r$ be a primitive root of $p^n$. If $r$ is odd then we can show that $r$ is a primitive root of $2p^n$. If $r$ ain't odd then it can be shown that $r+p^n$ is a primitive root of $2p^n$.
 
Re: primitive root

caffeinemachine said:
Let $r$ be a primitive root of $p^n$. If $r$ is odd then we can show that $r$ is a primitive root of $2p^n$. If $r$ ain't odd then it can be shown that $r+p^n$ is a primitive root of $2p^n$.

Ok let's first assume r is odd. Then if d divides g(p^n), we have r^d=1 (mod p^n) iff
d = g(p^n). But g(p^n)=g(2p^n). r is odd so r^d=1 (mod 2). Can we somehow combine moduli?
 
Re: primitive root

Poirot said:
Can we somehow combine moduli?
Under certain conditions yes.

Say $x\equiv a\pmod{m}, x\equiv a\pmod{n}$ and gcd$(m,n)=1$. Then $x\equiv a\pmod{mn}$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top