MHB Is There a Strategy for Finding Primitive Roots of 2p^n If There is One for p^n?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Primitive Root
Click For Summary
If there is a primitive root for p^n, then there exists a primitive root for 2p^n, particularly if the primitive root r is odd. If r is not odd, then r + p^n can be shown to be a primitive root of 2p^n. The discussion explores the conditions under which moduli can be combined to demonstrate this relationship. Specifically, it highlights that if certain congruences hold true, they can be combined when the moduli are coprime. The overall strategy revolves around leveraging properties of primitive roots and modular arithmetic.
Poirot1
Messages
243
Reaction score
0
let p be an odd prime. Show that if there is a primitive root of p^n, then there is a primitive root of 2p^n. Strategy?
 
Mathematics news on Phys.org
Re: primitive root

Poirot said:
let p be an odd prime. Show that if there is a primitive root of p^n, then there is a primitive root of 2p^n. Strategy?

Let $r$ be a primitive root of $p^n$. If $r$ is odd then we can show that $r$ is a primitive root of $2p^n$. If $r$ ain't odd then it can be shown that $r+p^n$ is a primitive root of $2p^n$.
 
Re: primitive root

caffeinemachine said:
Let $r$ be a primitive root of $p^n$. If $r$ is odd then we can show that $r$ is a primitive root of $2p^n$. If $r$ ain't odd then it can be shown that $r+p^n$ is a primitive root of $2p^n$.

Ok let's first assume r is odd. Then if d divides g(p^n), we have r^d=1 (mod p^n) iff
d = g(p^n). But g(p^n)=g(2p^n). r is odd so r^d=1 (mod 2). Can we somehow combine moduli?
 
Re: primitive root

Poirot said:
Can we somehow combine moduli?
Under certain conditions yes.

Say $x\equiv a\pmod{m}, x\equiv a\pmod{n}$ and gcd$(m,n)=1$. Then $x\equiv a\pmod{mn}$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K