Is There an Inequality Challenge with Real Numbers?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Inequality
Click For Summary
SUMMARY

The discussion centers on the inequality challenge involving real numbers \(a, b, c, d\) with the condition \(abcd=1\). It establishes that if \(a+b+c+d>\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}\), then it must follow that \(a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}\). Participants debated the validity of the assumptions and the application of the AM-GM inequality, particularly questioning the necessity of \(a, b, c, d > 0\) for the proof to hold.

PREREQUISITES
  • Understanding of real number properties
  • Familiarity with the AM-GM inequality
  • Basic knowledge of inequalities and their proofs
  • Experience with algebraic manipulation and expressions
NEXT STEPS
  • Study the AM-GM inequality in depth
  • Explore proofs involving inequalities with multiple variables
  • Investigate the implications of the condition \(abcd=1\) on inequalities
  • Review examples of inequality challenges in real analysis
USEFUL FOR

Mathematicians, students studying inequalities, and anyone interested in advanced algebraic proofs will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,c,\,d$ be real numbers such that $abcd=1$ and $a+b+c+d>\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}$.

Prove that $a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}$.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,c,\,d$ be real numbers such that $abcd=1$ and $a+b+c+d---(1)>\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}---(2)$.

Prove that $a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}---(3)$.
let $a>b>c>d,\,\, and ,\,\,abcd=1$
we have:$(1)=a+b+c+d>(2)=a^2cd+ab^2d+abc^2+bcd^2$
if $(1)<(3)=a^2bc+b^2cd+ac^2d+abd^2$ is true, then
$-1\times(1)=-a-b-c-d>-1\times(3)$
$=-a^2bc-b^2cd-ac^2d-abd^2---(4)$
now we ony have to prove $(2)+(4)<0$
after simplification we have:
$(2)+(4)=(a-c)(b-d)(bd-ac)<0$
and the proof is done
 
Last edited:
Albert said:
let $a>b>c>d,\,\, and ,\,\,abcd=1$
we have:$(1)=a+b+c+d>(2)=a^2cd+ab^2d+abc^2+bcd^2$
if $(1)<(3)=a^2bc+b^2cd+ac^2d+abd^2$ is true, then
if $-1\times(1)=-a-b-c-d>-1\times(3)$
$=-a^2bc-b^2cd-ac^2d-abd^2---(4)$
now we ony have to prove $(2)+(4)<0$
after simplification we have:
$(2)+(4)=(a-c)(b-d)(bd-ac)<0$
and the proof is done
There are a couple of issues
issue 1:because of non symmetry

what if a > c> b> d.

issue 2
we have shown that
$\dfrac{a}{b} + \dfrac{b}{c}+ \dfrac{c}{d}+\dfrac{d}{a} \le \dfrac{b}{a} + \dfrac{c}{b}+ \dfrac{d}{c}+\dfrac{a}{d} $
this dos not mean that
$a + b + c + d \le \dfrac{b}{a}+ \dfrac{c}{b}+ \dfrac{d}{c}+\dfrac{a}{d} $
 
kaliprasad said:
There are a couple of issues
issue 1:because of non symmetry

what if a > c> b> d.

issue 2
we have shown that
$\dfrac{a}{b} + \dfrac{b}{c}+ \dfrac{c}{d}+\dfrac{d}{a} \le \dfrac{b}{a} + \dfrac{c}{b}+ \dfrac{d}{c}+\dfrac{a}{d} $
this dos not mean that
$a + b + c + d \le \dfrac{b}{a}+ \dfrac{c}{b}+ \dfrac{d}{c}+\dfrac{a}{d} $
a>c>b>d
(a-c)(b-d)(bd-ac)<0 also is true
x>y----(m)
-x>-z---(n)
if (m)(n) both true then
(m)+(n)
0>y-z
y-z=y+(-z)must <0
so x<z
 
Hi Albert,

I don't think I am in the right position to judge your solution as I don't quite follow some of the arguments, but I want to share with you, kaliprasad and others of the solution that I saw online::)

By using the AM-GM inequality to account for the terms $\dfrac{a}{b},\,\dfrac{a}{b},\,\dfrac{b}{c},\,\dfrac{a}{d}$, we have

$\dfrac{\dfrac{a}{b}+\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{a}{d}}{4}\ge \sqrt[4]{\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{a}{d}}=\sqrt[4]{\dfrac{a^4}{abcd}}=a$

Analogously,
$\dfrac{\dfrac{b}{c}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{b}{a}}{4}\ge b$,

$\dfrac{\dfrac{c}{d}+\dfrac{c}{d}+\dfrac{d}{a}+\dfrac{c}{b}}{4}\ge c$,

$\dfrac{\dfrac{d}{a}+\dfrac{d}{a}+\dfrac{a}{b}+\dfrac{d}{c}}{4}\ge d$,

Summming up all these four inequalities gives

$\dfrac{3}{4}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}\right)+\dfrac{1}{4}\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}\right)\ge a+b+c+d$

In particular,

if $a+b+c+d>\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}$, then $a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}$ and we are done.
 
anemone said:
Hi Albert,

I don't think I am in the right position to judge your solution as I don't quite follow some of the arguments, but I want to share with you, kaliprasad and others of the solution that I saw online::)

By using the AM-GM inequality to account for the terms $\dfrac{a}{b},\,\dfrac{a}{b},\,\dfrac{b}{c},\,\dfrac{a}{d}$, we have

$\dfrac{\dfrac{a}{b}+\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{a}{d}}{4}\ge \sqrt[4]{\dfrac{a}{b}\cdot\dfrac{a}{b}\cdot\dfrac{b}{c}\cdot\dfrac{a}{d}}=\sqrt[4]{\dfrac{a^4}{abcd}}=a$

Analogously,
$\dfrac{\dfrac{b}{c}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{b}{a}}{4}\ge b$,

$\dfrac{\dfrac{c}{d}+\dfrac{c}{d}+\dfrac{d}{a}+\dfrac{c}{b}}{4}\ge c$,

$\dfrac{\dfrac{d}{a}+\dfrac{d}{a}+\dfrac{a}{b}+\dfrac{d}{c}}{4}\ge d$,

Summming up all these four inequalities gives

$\dfrac{3}{4}\left(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}\right)+\dfrac{1}{4}\left(\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}\right)\ge a+b+c+d$

In particular,

if $a+b+c+d>\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{d}+\dfrac{d}{a}$, then $a+b+c+d<\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{d}{c}+\dfrac{a}{d}$ and we are done.
you did not say a,b,c,d>0
How can you solve it
"By using the AM-GM inequality "?
exam:
$-1=\dfrac{\dfrac{-1}{1}+\dfrac{-1}{1}+\dfrac{-1}{1}+\dfrac{-1}{1}}{4}\ge \sqrt[4]{\dfrac{-1}{1}\cdot\dfrac{-1}{1}\cdot\dfrac{-1}{1}\cdot\dfrac{-1}{1}}=\sqrt[4]{\dfrac{(-1)^4}{1}}=1$
does not hold
 
Last edited:
You're right, Albert(Yes)...has to check with the original problem and post back if I find it. :o
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K