Hi everybody...(adsbygoogle = window.adsbygoogle || []).push({});

I want to solve the diffusion equation in 1D using the Crank-Nicolson scheme. I have two books about numerical methods, and the problem is that in "Numerical Analysis" from Burden and Faires, the differences equation for the diffusion equations is:

[itex]\frac{w_{i,j+1}-w_{i,j}}{k}-\frac{\alpha^2}{2h^2}\Big[w_{i+1,j}-2w_{i,j}+w_{i-1,j}+w_{i+1,j+1}-2w_{i,j+1}+w_{i-1,j+1}\Big]=0[/itex]

On the other hand, in "Numerical and analytical methods for scientists and engineers using mathematica", the same equation is expressed as:

[itex]\frac{w_{i,j}-w_{i,j-1}}{k}-\frac{\alpha^2}{2h^2}\Big[w_{i+1,j}-2w_{i,j}+w_{i-1,j}+w_{i+1,j-1}-2w_{i,j-1}+w_{i-1,j-1}\Big]=0[/itex]

[itex]i[/itex] represents the space steps, [itex]j[/itex] the time steps, [itex]k[/itex] is [itex]\Delta t [/itex], [itex]h[/itex] is [itex]\Delta x[/itex]

Should this schemes yield the same results? Why the differences?

I mean, in the first term of the first scheme, the numerator is [itex]w_{i,j+1}-w_{i,j}[/itex], but in the second scheme is [itex]w_{i,j}-w_{i,j-1}[/itex].

In addition to this, the last 3 terms of the equations (inside the brackets) are [itex]w_{i+1,j+1}-2w_{i,j+1}+w_{i-1,j+1}[/itex] and [itex]w_{i+1,j-1}-2w_{i,j-1}+w_{i-1,j-1}[/itex].

Are both schemes named Crank-Nicolson?

Can somebody help me with this?? Thanks!!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Is there more than one Crank-Nicolson scheme?

**Physics Forums | Science Articles, Homework Help, Discussion**