MHB Is This a Valid Soft-Thresholding Function?

  • Thread starter Thread starter OhMyMarkov
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
The discussion centers on the validity of a proposed soft-thresholding function in relation to its definition. The original soft-thresholding function is defined to output zero when the input is between zero and a threshold T. In contrast, the alternative function suggests a non-zero output of T minus y for inputs within the same range. A participant argues that this discrepancy in outputs disqualifies the second function from being considered a valid soft-thresholding function. The conversation highlights the importance of precise definitions in mathematical contexts.
OhMyMarkov
Messages
81
Reaction score
0
Hello everyone!

The soft-thresholding function often arrises when trying to find the MAP estimate with a Laplacian model of the parameter to be estimated. It is defined as:

\[
w(y) = \left\{
\begin{array}{l l}
y+T & \text{y < -T}\\
y-T, & \text{y > T}\\
0, & \text{otherwise}\\
\end{array} \right.
\]

Now, in a different context, could this be described as a soft thresholding function?

\[
w(y) = \left\{
\begin{array}{l l}
T-y & \quad \text{if $0 < y < T$}\\
0, & \quad \text{otherwise}\\
\end{array} \right.
\]

Thanks for the help!
 
Last edited by a moderator:
Physics news on Phys.org
OhMyMarkov said:
Hello everyone!

The soft-thresholding function often arrises when trying to find the MAP estimate with a Laplacian model of the parameter to be estimated. It is defined as:

\[
w(y) = \left\{
\begin{array}{l l}
y+T & \text{y < -T}\\
y-T, & \text{y > T}\\
0, & \text{otherwise}\\
\end{array} \right.
\]

Now, in a different context, could this be described as a soft thresholding function?

\[
w(y) = \left\{
\begin{array}{l l}
T-y & \quad \text{if $0 < y < T$}\\
0, & \quad \text{otherwise}\\
\end{array} \right.
\]

Thanks for the help!

Hi OhMyMarkov, :)

No, I don't think so. According to the first definition \(w(y)=0\) when \(0<y<T\). However according to the second definition \(w(y)=T-y\) when \(0<y<T\).

Kind Regards,
Sudharaka.
 
The standard _A " operator" maps a Null Hypothesis Ho into a decision set { Do not reject:=1 and reject :=0}. In this sense ( HA)_A , makes no sense. Since H0, HA aren't exhaustive, can we find an alternative operator, _A' , so that ( H_A)_A' makes sense? Isn't Pearson Neyman related to this? Hope I'm making sense. Edit: I was motivated by a superficial similarity of the idea with double transposition of matrices M, with ## (M^{T})^{T}=M##, and just wanted to see if it made sense to talk...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 19 ·
Replies
19
Views
3K