MHB Is This an Example of Absolute Value Inequalities?

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
The discussion centers on solving the absolute value inequality |(4 - 5x)/2| > 1. Participants confirm that the theorem stating |u| > a implies u < -a or u > a can be applied. The inequality can be rewritten and simplified by multiplying through by 2, leading to |x - 4/5| > 2/5. The solution is straightforward once the absolute value is isolated. This confirms that the original problem is indeed an example of absolute value inequalities.
mathdad
Messages
1,280
Reaction score
0
Solve the inequality.

| (4 - 5x)/2 | > 1

Can I use the following theorem?

If a > 0, then | u | > a if and only if u < -a or u > a
 
Mathematics news on Phys.org
Yes, you can: either $$\frac{4- 5x}{2}> 1$$ or [math]\frac{4- 5x}{2}< -1[/math]. Continue, with either equation, by multiplying both sides by the positive number, 2.
 
I can take it from here.
 
RTCNTC said:
Solve the inequality.

| (4 - 5x)/2 | > 1

Can I use the following theorem?

If a > 0, then | u | > a if and only if u < -a or u > a

We are given:

$$\left|\frac{4-5x}{2}\right|>1$$

Multiply through by 2/5:

$$\left|x-\frac{4}{5}\right|>\frac{2}{5}$$

Now the solution is easy to read off...:D
 
Is the question what is known as absolute value inequalities?
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top