I Is this conditional expectation identity true?

psie
Messages
315
Reaction score
40
TL;DR Summary
I am working an exercise to show a conditional expectation identity, but I'm not sure if it is true at all.
I'm working through an exercise to prove various identities of the conditional expectation. One of the identities I need to show is the following $$E(f(X,Y)\mid Y=y)=E(f(X,y)\mid Y=y).$$ But I am a little concerned about this identity from things I've read elsewhere. I am paraphrasing from Breiman's book Probability:
Proposition 4.36: Let ##X## and ##Y## be random variables. Let ##f(X,Y)## be a real valued, random variable such that the expectation of the absolute value of ##f(X,Y)## is finite. If ##Q(\cdot\mid Y=y)## is a regular conditional distribution for ##X## given ##Y=y##, then, $$E(f(X,Y)\mid Y=y)=\int f(x,y) \, dQ(\cdot \mid Y=y)\quad \text{a.s. with respect to the law of }Y.\tag{4.37}$$
Again, paraphrasing Breiman in section 4.3, page 80:
It is tempting to replace the right-hand side of (4.37) by ##E(f(X,y)\mid Y=y)##. But this object cannot be defined through the standard definition of conditional expectation (4.18) [defined below].
Definition 4.18: ##E(X\mid Y=y)## is any random variable on ##\mathbb R##, where ##Q(B)=P(Y \in B)##, satisfying $$ \int_B E(X\mid Y=y) dQ = \int_{Y \in B} X dP,$$ for all Borel sets ##B##.
Thus, does ##E(f(X,Y)\mid Y=y)= E(f(X,y)\mid Y=y)## make sense? Breiman seems to suggest that ##E(f(X,y)\mid Y=y)## is not well defined, so I'm not sure how to proceed.
 
Physics news on Phys.org
I think this pdf clarified things a bit.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top