SweatingBear
- 119
- 0
Forum, I would love if you had a look at my proof below and gave me some feedback. Is the approach valid? Perhaps you have an alternative way to solve the problem? Anything helps!
Problem: Prove that there exist no positive integers $$x$$ and $$y$$ such that $$x^2 -y^2 = 270$$.
Proof: Given that $$x, y \in \mathbb{N}$$ where $$\mathbb{N} = \{ 1, 2, 3, \ldots \}$$, we can infer that $$x$$ and $$y$$ respectively will be either even or odd. That means we have four different cases to examine.
Case #1: $$x$$ even, $$y$$ even. Let $$x = 2k $$ and $$y = 2p$$ ($$k,p\in\mathbb{N}$$); this yields
$$(2k)^2 - (2p)^2 = 270 \iff 4k^2 - 4p^2 = 270 \iff k^2 - p^2 = \frac {270}4 \, .$$
Note now that $$k^2 - p^2$$ itself is in an integer but $$\frac {270}4$$ is not, which clearly is nonsensical. $$k$$ and $$p$$ can therefore not be integers and consequently neither $$x$$ and $$y$$ (at least not even integers).
Case #2: $$x$$ even, $$y$$ odd. Let $$x = 2k $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields
$$(2k)^2 - (2p-1)^2 = 270 \iff 4(k^2 - p^2 + p) - 1 = 270 \iff k^2 - p^2 + p = \frac {271}4 \, .$$
Similarly, $$k^2 - p^2 + p$$ is integral but $$\frac {271}4$$ is not; nonsensical of course and thus $$k$$ and $$p$$ cannot be integral (and consequently neither $$x$$ and $$y$$).
Note: the case $$x$$ odd and $$y$$ even is analogous and will therefore be skipped.
Case #3: $$x$$ odd, $$y$$ odd. Let $$x = 2k - 1 $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields
$$4(k^2 - k - p^2 + p) = 270 \iff k^2 - k - p^2 + p = \frac {270}4 \, .$$
Again, this leads us to the conclusion that $$k$$ and $$p$$ cannot be integers and therefore neither $$x$$ and $$y$$. $$\text{Q.E.D.}$$
Any thoughts?
Problem: Prove that there exist no positive integers $$x$$ and $$y$$ such that $$x^2 -y^2 = 270$$.
Proof: Given that $$x, y \in \mathbb{N}$$ where $$\mathbb{N} = \{ 1, 2, 3, \ldots \}$$, we can infer that $$x$$ and $$y$$ respectively will be either even or odd. That means we have four different cases to examine.
Case #1: $$x$$ even, $$y$$ even. Let $$x = 2k $$ and $$y = 2p$$ ($$k,p\in\mathbb{N}$$); this yields
$$(2k)^2 - (2p)^2 = 270 \iff 4k^2 - 4p^2 = 270 \iff k^2 - p^2 = \frac {270}4 \, .$$
Note now that $$k^2 - p^2$$ itself is in an integer but $$\frac {270}4$$ is not, which clearly is nonsensical. $$k$$ and $$p$$ can therefore not be integers and consequently neither $$x$$ and $$y$$ (at least not even integers).
Case #2: $$x$$ even, $$y$$ odd. Let $$x = 2k $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields
$$(2k)^2 - (2p-1)^2 = 270 \iff 4(k^2 - p^2 + p) - 1 = 270 \iff k^2 - p^2 + p = \frac {271}4 \, .$$
Similarly, $$k^2 - p^2 + p$$ is integral but $$\frac {271}4$$ is not; nonsensical of course and thus $$k$$ and $$p$$ cannot be integral (and consequently neither $$x$$ and $$y$$).
Note: the case $$x$$ odd and $$y$$ even is analogous and will therefore be skipped.
Case #3: $$x$$ odd, $$y$$ odd. Let $$x = 2k - 1 $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields
$$4(k^2 - k - p^2 + p) = 270 \iff k^2 - k - p^2 + p = \frac {270}4 \, .$$
Again, this leads us to the conclusion that $$k$$ and $$p$$ cannot be integers and therefore neither $$x$$ and $$y$$. $$\text{Q.E.D.}$$
Any thoughts?