MHB Is this proof of x² - y² = 270 being unsolvable valid?

  • Thread starter Thread starter SweatingBear
  • Start date Start date
  • Tags Tags
    Proof Review
SweatingBear
Messages
119
Reaction score
0
Forum, I would love if you had a look at my proof below and gave me some feedback. Is the approach valid? Perhaps you have an alternative way to solve the problem? Anything helps!

Problem: Prove that there exist no positive integers $$x$$ and $$y$$ such that $$x^2 -y^2 = 270$$.

Proof: Given that $$x, y \in \mathbb{N}$$ where $$\mathbb{N} = \{ 1, 2, 3, \ldots \}$$, we can infer that $$x$$ and $$y$$ respectively will be either even or odd. That means we have four different cases to examine.

Case #1: $$x$$ even, $$y$$ even. Let $$x = 2k $$ and $$y = 2p$$ ($$k,p\in\mathbb{N}$$); this yields

$$(2k)^2 - (2p)^2 = 270 \iff 4k^2 - 4p^2 = 270 \iff k^2 - p^2 = \frac {270}4 \, .$$

Note now that $$k^2 - p^2$$ itself is in an integer but $$\frac {270}4$$ is not, which clearly is nonsensical. $$k$$ and $$p$$ can therefore not be integers and consequently neither $$x$$ and $$y$$ (at least not even integers).

Case #2: $$x$$ even, $$y$$ odd. Let $$x = 2k $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields

$$(2k)^2 - (2p-1)^2 = 270 \iff 4(k^2 - p^2 + p) - 1 = 270 \iff k^2 - p^2 + p = \frac {271}4 \, .$$

Similarly, $$k^2 - p^2 + p$$ is integral but $$\frac {271}4$$ is not; nonsensical of course and thus $$k$$ and $$p$$ cannot be integral (and consequently neither $$x$$ and $$y$$).

Note: the case $$x$$ odd and $$y$$ even is analogous and will therefore be skipped.

Case #3: $$x$$ odd, $$y$$ odd. Let $$x = 2k - 1 $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields

$$4(k^2 - k - p^2 + p) = 270 \iff k^2 - k - p^2 + p = \frac {270}4 \, .$$

Again, this leads us to the conclusion that $$k$$ and $$p$$ cannot be integers and therefore neither $$x$$ and $$y$$. $$\text{Q.E.D.}$$

Any thoughts?
 
Mathematics news on Phys.org
That argument looks fine. The key to it is the fact that 270 is a multiple of 2 but not a multiple of 4. In fact, if $x^2-y^2 = (x+y)(x-y) = 270$ then one of the factors $x+y$, $x-y$ must be even and the other one odd. But $x+y = (x-y) + 2y$, so $x+y$ and $x-y$ have the same parity (either both even or both odd), so their product cannot be 270.
 
sweatingbear said:
Forum, I would love if you had a look at my proof below and gave me some feedback. Is the approach valid? Perhaps you have an alternative way to solve the problem? Anything helps!

Problem: Prove that there exist no positive integers $$x$$ and $$y$$ such that $$x^2 -y^2 = 270$$.

Proof: Given that $$x, y \in \mathbb{N}$$ where $$\mathbb{N} = \{ 1, 2, 3, \ldots \}$$, we can infer that $$x$$ and $$y$$ respectively will be either even or odd. That means we have four different cases to examine.

Case #1: $$x$$ even, $$y$$ even. Let $$x = 2k $$ and $$y = 2p$$ ($$k,p\in\mathbb{N}$$); this yields

$$(2k)^2 - (2p)^2 = 270 \iff 4k^2 - 4p^2 = 270 \iff k^2 - p^2 = \frac {270}4 \, .$$

Note now that $$k^2 - p^2$$ itself is in an integer but $$\frac {270}4$$ is not, which clearly is nonsensical. $$k$$ and $$p$$ can therefore not be integers and consequently neither $$x$$ and $$y$$ (at least not even integers).

Case #2: $$x$$ even, $$y$$ odd. Let $$x = 2k $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields

$$(2k)^2 - (2p-1)^2 = 270 \iff 4(k^2 - p^2 + p) - 1 = 270 \iff k^2 - p^2 + p = \frac {271}4 \, .$$

Similarly, $$k^2 - p^2 + p$$ is integral but $$\frac {271}4$$ is not; nonsensical of course and thus $$k$$ and $$p$$ cannot be integral (and consequently neither $$x$$ and $$y$$).

Note: the case $$x$$ odd and $$y$$ even is analogous and will therefore be skipped.

Case #3: $$x$$ odd, $$y$$ odd. Let $$x = 2k - 1 $$ and $$y = 2p-1$$ ($$k,p\in\mathbb{N}$$); this yields

$$4(k^2 - k - p^2 + p) = 270 \iff k^2 - k - p^2 + p = \frac {270}4 \, .$$

Again, this leads us to the conclusion that $$k$$ and $$p$$ cannot be integers and therefore neither $$x$$ and $$y$$. $$\text{Q.E.D.}$$

Any thoughts?

it looks good

a shorter proof shall be

x^2 - y^2 = (x-y)(x+y) = (x- y)(x- y+ 2y)

either both are odd or even so product is odd or multiple of 4 if even,
270 is multiple of 2 and not 4 and hence not possible

I am sorry. I had not seen Oplag's proof which is almost same.
 
Fantastic, thank you!
 
Hi everyone, :)

Another method to prove this is to use the fact that every square integer when divided by \(4\) gives a remainder of \(0\) or \(1\). That is, \(x^2\equiv n\mbox{(mod 4)}\) has solutions if and only if \(n\equiv 0,\,1\mbox{(mod 4)}\). Hence the remainder of \(x^2-y^2\) divided by \(4\) should be either \(0,\, 1\) or \(3\). But the remainder of \(270\) divided by \(4\) is \(2\). Hence we arrive at the conclusion that \(x^2-y^2=270\) has no integer solutions.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top