MHB Is This the Sum of the Series? $\sum_{n=0}^{\infty}\frac{2^n}{3^nn!}$

  • Thread starter Thread starter ineedhelpnow
  • Start date Start date
  • Tags Tags
    Series Sum
Click For Summary
The series $\sum_{n=0}^{\infty}\frac{2^n}{3^nn!}$ is correctly transformed into $\sum_{n=0}^{\infty}(\frac{2}{3})^n \frac{1}{n!}$. This matches the form of the exponential series $\sum_{n=0}^{\infty}\frac{x^n}{n!}=e^x$ with $x=\frac{2}{3}$. Therefore, the sum evaluates to $e^{2/3}$. The conclusion confirms the initial query about the correctness of the series representation.
ineedhelpnow
Messages
649
Reaction score
0
$\sum_{n=0}^{\infty}\frac{2^n}{3^nn!}$

is this correct?

$\sum_{n=0}^{\infty}(\frac{2}{3})^n \frac{1}{n!}$

$\sum_{n=0}^{\infty}\frac{(x)^n}{n!}=e^x$

$x=2/3$

$e^x=e^{2/3}
 
Physics news on Phys.org
Yes, that's correct. :D
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 16 ·
Replies
16
Views
4K