MHB Is x+1 a Factor of the Polynomial x^3-5x^2+3x+1?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Division
AI Thread Summary
The discussion centers on determining if x+1 is a factor of the polynomial x^3-5x^2+3x+1 using the factor theorem and synthetic division. Synthetic division shows that the remainder when evaluating the polynomial at x=-1 is -8, indicating that x+1 is not a factor. The roots of the polynomial are found to be 2-√5, 1, and 2+√5, confirming that x+1 does not yield a zero. The conclusion is that x+1 is not a factor of the given cubic polynomial.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use factor theorem and syntheitc division and its conjugate to decide whether the second polynomial is a factor of the first
$x^3-5x^2+3x+1;\quad x+1$
\item \textit{apply synthetic division}
\item$\begin{array}{c|rrrrr}
1 &1 &-5 &3 &1\\
& &1 &-4 &-1\\
\hline &1 &-4 &-1 &0
\end{array}$
$(x-1)$ so $x^2-4x-1$
$\begin{array}{rl}
x &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
\textsf{a,b,c} &=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(1)(-1)}}{2(-1)}
=\dfrac{4\pm\sqrt{20}}{-2}
=\dfrac{4\pm 2\sqrt{5}}{2}
=2+\sqrt{5}\\
\textsf{hence} &x=1,-1,2+\sqrt{5}
\end{array}$

my first pass thru this...
actually I didn't get what the conjugate thing was about?
 
Mathematics news on Phys.org
zeros of $f(x) = x^3 -5x^2 + 3x + 1$ are $x \in \{ 2- \sqrt{5}, 1 , 2+\sqrt{5} \}$

Code:
-1]  1  -5  3   1
        -1  6  -9
------------------
     1  -6  9  -8

$f(-1) = -8 \implies (x+1)$ is not a factor of the cubic polynomial
 
If I wanted to determine whether or not x+ 1 is a factor of $x^3- 5x^2+ 3x+ 1$ I would simply observe that when x= -1, $(-1)^3- 5(-1)^2+ 3(-1)+ 1= -1- 5- 3+ 1= -9+ 1= -8$. Since that is not 0, no, x+1 is NOT a factor of $x^3- 5x^2+ 3x+ 1$.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
7
Views
2K
Replies
3
Views
1K
Replies
13
Views
2K
Replies
8
Views
1K
Replies
1
Views
1K
Back
Top