MHB Is x+1 a Factor of the Polynomial x^3-5x^2+3x+1?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Division
Click For Summary
The discussion centers on determining if x+1 is a factor of the polynomial x^3-5x^2+3x+1 using the factor theorem and synthetic division. Synthetic division shows that the remainder when evaluating the polynomial at x=-1 is -8, indicating that x+1 is not a factor. The roots of the polynomial are found to be 2-√5, 1, and 2+√5, confirming that x+1 does not yield a zero. The conclusion is that x+1 is not a factor of the given cubic polynomial.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use factor theorem and syntheitc division and its conjugate to decide whether the second polynomial is a factor of the first
$x^3-5x^2+3x+1;\quad x+1$
\item \textit{apply synthetic division}
\item$\begin{array}{c|rrrrr}
1 &1 &-5 &3 &1\\
& &1 &-4 &-1\\
\hline &1 &-4 &-1 &0
\end{array}$
$(x-1)$ so $x^2-4x-1$
$\begin{array}{rl}
x &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
\textsf{a,b,c} &=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(1)(-1)}}{2(-1)}
=\dfrac{4\pm\sqrt{20}}{-2}
=\dfrac{4\pm 2\sqrt{5}}{2}
=2+\sqrt{5}\\
\textsf{hence} &x=1,-1,2+\sqrt{5}
\end{array}$

my first pass thru this...
actually I didn't get what the conjugate thing was about?
 
Mathematics news on Phys.org
zeros of $f(x) = x^3 -5x^2 + 3x + 1$ are $x \in \{ 2- \sqrt{5}, 1 , 2+\sqrt{5} \}$

Code:
-1]  1  -5  3   1
        -1  6  -9
------------------
     1  -6  9  -8

$f(-1) = -8 \implies (x+1)$ is not a factor of the cubic polynomial
 
If I wanted to determine whether or not x+ 1 is a factor of $x^3- 5x^2+ 3x+ 1$ I would simply observe that when x= -1, $(-1)^3- 5(-1)^2+ 3(-1)+ 1= -1- 5- 3+ 1= -9+ 1= -8$. Since that is not 0, no, x+1 is NOT a factor of $x^3- 5x^2+ 3x+ 1$.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 8 ·
Replies
8
Views
1K
Replies
48
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K