MHB Is x+1 a Factor of the Polynomial x^3-5x^2+3x+1?

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Division
Click For Summary
The discussion centers on determining if x+1 is a factor of the polynomial x^3-5x^2+3x+1 using the factor theorem and synthetic division. Synthetic division shows that the remainder when evaluating the polynomial at x=-1 is -8, indicating that x+1 is not a factor. The roots of the polynomial are found to be 2-√5, 1, and 2+√5, confirming that x+1 does not yield a zero. The conclusion is that x+1 is not a factor of the given cubic polynomial.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
Use factor theorem and syntheitc division and its conjugate to decide whether the second polynomial is a factor of the first
$x^3-5x^2+3x+1;\quad x+1$
\item \textit{apply synthetic division}
\item$\begin{array}{c|rrrrr}
1 &1 &-5 &3 &1\\
& &1 &-4 &-1\\
\hline &1 &-4 &-1 &0
\end{array}$
$(x-1)$ so $x^2-4x-1$
$\begin{array}{rl}
x &=\dfrac{-b\pm\sqrt{b^2-4ac}}{2a}\\
\textsf{a,b,c} &=\dfrac{-(-4)\pm\sqrt{(-4)^2-4(1)(-1)}}{2(-1)}
=\dfrac{4\pm\sqrt{20}}{-2}
=\dfrac{4\pm 2\sqrt{5}}{2}
=2+\sqrt{5}\\
\textsf{hence} &x=1,-1,2+\sqrt{5}
\end{array}$

my first pass thru this...
actually I didn't get what the conjugate thing was about?
 
Mathematics news on Phys.org
zeros of $f(x) = x^3 -5x^2 + 3x + 1$ are $x \in \{ 2- \sqrt{5}, 1 , 2+\sqrt{5} \}$

Code:
-1]  1  -5  3   1
        -1  6  -9
------------------
     1  -6  9  -8

$f(-1) = -8 \implies (x+1)$ is not a factor of the cubic polynomial
 
If I wanted to determine whether or not x+ 1 is a factor of $x^3- 5x^2+ 3x+ 1$ I would simply observe that when x= -1, $(-1)^3- 5(-1)^2+ 3(-1)+ 1= -1- 5- 3+ 1= -9+ 1= -8$. Since that is not 0, no, x+1 is NOT a factor of $x^3- 5x^2+ 3x+ 1$.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...

Similar threads

Replies
2
Views
1K
Replies
5
Views
1K
Replies
7
Views
2K
Replies
3
Views
1K
Replies
13
Views
2K
Replies
8
Views
1K
Replies
1
Views
1K