batnas
- 1
- 0
Hey everybody
I'm developing a computer program that can take a series of data-points and estimate the next local maximum(top) of a sine-curve.
My approach to this is to take the formula for a sine-function(f(x)=Asin(\omega x - \phi) + B), and isolate all the variables, and that way I'll get a series of (more or less) simple equations, that I can use in my program.
(I'm not entirely sure this is the right approach, let me know otherwise...)
To do this we're using 4 equations with 4 unknown like this:
Then we isolate B in (1) and substitute into (2), (3) & (4):
y_1 = Asin(\omega x_1 - \phi) + B \Leftrightarrow
B = y_1 - Asin(\omega x_1 - \phi)
and
Next, we isolate A from (2.2) and substitute into the other 2:
y_2 = Asin(\omega x_2 - \phi) + y_1 - Asin(\omega x_1 - \phi) \Leftrightarrow
y_2 - y_1= Asin(\omega x_2 - \phi) - Asin(\omega x_1 - \phi) \Leftrightarrow
y_2 - y_1= A(sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)) \Leftrightarrow
A = \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}
and
Next we want to isolate \omega from (3.3):
y_3 = \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_3 - \phi) + y_1 - \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_1 - \phi) \Leftrightarrow
y_3 - y_1= \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_3 - \phi) - \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_1 - \phi)
And this is where I get stuck...
I would think I could take sin^{-1}() of everything, but I'm not sure if it's that simple.
Any help is appreciated
Thanks
\\Batnas
I'm developing a computer program that can take a series of data-points and estimate the next local maximum(top) of a sine-curve.
My approach to this is to take the formula for a sine-function(f(x)=Asin(\omega x - \phi) + B), and isolate all the variables, and that way I'll get a series of (more or less) simple equations, that I can use in my program.
(I'm not entirely sure this is the right approach, let me know otherwise...)
To do this we're using 4 equations with 4 unknown like this:
- (1) y_1 = Asin(\omega x_1 - \phi) + B
- (2) y_2 = Asin(\omega x_2 - \phi) + B
- (3) y_3 = Asin(\omega x_3 - \phi) + B
- (4) y_4 = Asin(\omega x_4 - \phi) + B
Then we isolate B in (1) and substitute into (2), (3) & (4):
y_1 = Asin(\omega x_1 - \phi) + B \Leftrightarrow
B = y_1 - Asin(\omega x_1 - \phi)
and
- (2.2) y_2 = Asin(\omega x_2 - \phi) + y_1 - Asin(\omega x_1 - \phi)
- (3.2) y_3 = Asin(\omega x_3 - \phi) + y_1 - Asin(\omega x_1 - \phi)
- (4.2) y_4 = Asin(\omega x_4 - \phi) + y_1 - Asin(\omega x_1 - \phi)
Next, we isolate A from (2.2) and substitute into the other 2:
y_2 = Asin(\omega x_2 - \phi) + y_1 - Asin(\omega x_1 - \phi) \Leftrightarrow
y_2 - y_1= Asin(\omega x_2 - \phi) - Asin(\omega x_1 - \phi) \Leftrightarrow
y_2 - y_1= A(sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)) \Leftrightarrow
A = \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}
and
- (3.3) y_3 = \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_3 - \phi) + y_1 - \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_1 - \phi)
- (4.3) y_4 = \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_4 - \phi) + y_1 - \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_1 - \phi)
Next we want to isolate \omega from (3.3):
y_3 = \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_3 - \phi) + y_1 - \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_1 - \phi) \Leftrightarrow
y_3 - y_1= \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_3 - \phi) - \frac{y_2 - y_1}{sin(\omega x_2 - \phi) - sin(\omega x_1 - \phi)}sin(\omega x_1 - \phi)
And this is where I get stuck...
I would think I could take sin^{-1}() of everything, but I'm not sure if it's that simple.
Any help is appreciated
Thanks
\\Batnas