MHB Joanne 's question at Yahoo Answers (Interval of convergence)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Convergence
Click For Summary
The series in question is $\sum_{n=2}^{\infty}\frac{(-1)^n}{(n-1)2^n}(x-1)^n$. Using the ratio test, it converges absolutely for $|x-1|<2$, leading to the interval of convergence $x\in (-1,3)$. At the endpoints, $x=-1$ results in divergence, while $x=3$ leads to conditional convergence. Therefore, the series converges if and only if $x\in(-1,3]$. This analysis provides a clear understanding of the interval of convergence for the series.
Mathematics news on Phys.org
Hello Joanne,

The series is $\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{(n-1)2^n}(x-1)^n.$ Using the ratio test: $$\begin{aligned}L&=\lim_{n\to \infty}\left|\frac{u_{n+1}}{u_n}\right|\\&=\lim_{n\to \infty}\left|\dfrac{(-1)^{n+1}(x-1)^{n+1}}{n2^{n+1}}\cdot\frac{(n-1)2^n}{(-1)^n(x-1)^n}\right|\\&=\lim_{n\to \infty}\left|\dfrac{n-1}{2n}(x-1)\right|\\&=\frac{|x-1|}{2}<1\\&\Leftrightarrow |x-1|<2\\& \Leftrightarrow x\in (-1,3)\end{aligned}$$

So, the series is absolutely convergent if $|x-1|<2$ and divergent if $|x-1|>2$. If $|x-1|=2$ (i.e. $x=-1$ or $x=3$) we have

$(a)\;x=-1$. The series is $\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{(n-1)2^n}(-2)^n=\displaystyle\sum_{n=2}^{\infty}\dfrac{1}{n-1}.$ Using the limit comparison test we easily verify that the series is divergent.

$(b)\;x=3$. The series is $\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{(n-1)2^n}2^n=\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{n-1}.$ Using the Lebniz alteranting series criterion we easily verify that the series is conditionally convergent.

As a consequence the given series is convergent iff $x\in(-1,3]$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K