MHB Joanne 's question at Yahoo Answers (Interval of convergence)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Convergence
Click For Summary
The series in question is $\sum_{n=2}^{\infty}\frac{(-1)^n}{(n-1)2^n}(x-1)^n$. Using the ratio test, it converges absolutely for $|x-1|<2$, leading to the interval of convergence $x\in (-1,3)$. At the endpoints, $x=-1$ results in divergence, while $x=3$ leads to conditional convergence. Therefore, the series converges if and only if $x\in(-1,3]$. This analysis provides a clear understanding of the interval of convergence for the series.
Mathematics news on Phys.org
Hello Joanne,

The series is $\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{(n-1)2^n}(x-1)^n.$ Using the ratio test: $$\begin{aligned}L&=\lim_{n\to \infty}\left|\frac{u_{n+1}}{u_n}\right|\\&=\lim_{n\to \infty}\left|\dfrac{(-1)^{n+1}(x-1)^{n+1}}{n2^{n+1}}\cdot\frac{(n-1)2^n}{(-1)^n(x-1)^n}\right|\\&=\lim_{n\to \infty}\left|\dfrac{n-1}{2n}(x-1)\right|\\&=\frac{|x-1|}{2}<1\\&\Leftrightarrow |x-1|<2\\& \Leftrightarrow x\in (-1,3)\end{aligned}$$

So, the series is absolutely convergent if $|x-1|<2$ and divergent if $|x-1|>2$. If $|x-1|=2$ (i.e. $x=-1$ or $x=3$) we have

$(a)\;x=-1$. The series is $\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{(n-1)2^n}(-2)^n=\displaystyle\sum_{n=2}^{\infty}\dfrac{1}{n-1}.$ Using the limit comparison test we easily verify that the series is divergent.

$(b)\;x=3$. The series is $\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{(n-1)2^n}2^n=\displaystyle\sum_{n=2}^{\infty}\dfrac{(-1)^n}{n-1}.$ Using the Lebniz alteranting series criterion we easily verify that the series is conditionally convergent.

As a consequence the given series is convergent iff $x\in(-1,3]$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K