MHB Johnsy's question about finding a derivative via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The derivative of the function 3arccot(x) + 3arccot(1/x) is found to be zero. This is derived using implicit differentiation, where the derivative of arccot(x) is calculated as -1/(1 + x^2). The derivative of arccot(1/x) is also computed, resulting in 1/(x^2 + 1). Combining these results shows that the two derivatives cancel each other out, leading to a total derivative of zero. The relationship between arccot(x) and arctan(x) further confirms that their sum is a constant, thus reinforcing that the derivative is indeed zero.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
How do we find the derivative of $\displaystyle \begin{align*} 3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) } \end{align*}$?

To do this we should use implicit differentiation. If $\displaystyle \begin{align*} y = \arccot{(x)} \end{align*}$ then

$\displaystyle \begin{align*} \cot{(y)} &= x \\ \frac{\cos{(y)}}{\sin{(y)}} &= x \\ \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{\cos{(y)}}{\sin{(y)}} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left( x \right) \\ \frac{\mathrm{d}}{\mathrm{d}y} \left[ \frac{\cos{(y)}}{\sin{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left\{ \frac{\sin{(y)}\left[ -\sin{(y)} \right] - \cos{(y)}\cos{(y)}}{\left[ \sin^2{(y)} \right] ^2 } \right\} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left\{ \frac{ - \left[ \sin^2{(y)} + \cos^2{(y)} \right] }{\sin^2{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left[ -\frac{1}{\sin^2{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ -\csc^2{(y)} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left[ 1 + \cot^2{(y)} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left( 1 + \left\{ \cot{ \left[ \arccot{(x)} \right] } \right\} ^2 \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left( 1 + x^2 \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= -\frac{1}{1 + x^2} \end{align*}$

Thus by the chain rule, we have

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \arccot{ \left( \frac{1}{x} \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ \arccot{ \left( x^{-1} \right) } \right] \\ &= -x^{-2} \left[ -\frac{1}{1 + \left( x^{-1} \right) ^2 } \right] \\ &= \frac{ x^{-2} }{1 + x^{-2}} \\ &= \frac{1}{x^2 + 1} \end{align*}$

and thus

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ 3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) } \right] &= -\frac{3}{1 + x^2} + \frac{3}{1 + x^2} \\ &= 0 \end{align*}$
 
Mathematics news on Phys.org
We could also observe that:

$$\cot^{-1}(x)+\cot^{-1}\left(\frac{1}{x}\right)=\cot^{-1}(x)+\tan^{-1}(x)$$

This is a constant, $$\pm\frac{\pi}{2}$$, for all real values of $x$, hence:

$$\frac{d}{dx}\left(\cot^{-1}(x)+\cot^{-1}\left(\frac{1}{x}\right)\right)=0$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
5K
  • · Replies 1 ·
Replies
1
Views
10K