MHB Johnsy's question about finding a derivative via Facebook

  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative
AI Thread Summary
The derivative of the function 3arccot(x) + 3arccot(1/x) is found to be zero. This is derived using implicit differentiation, where the derivative of arccot(x) is calculated as -1/(1 + x^2). The derivative of arccot(1/x) is also computed, resulting in 1/(x^2 + 1). Combining these results shows that the two derivatives cancel each other out, leading to a total derivative of zero. The relationship between arccot(x) and arctan(x) further confirms that their sum is a constant, thus reinforcing that the derivative is indeed zero.
Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
How do we find the derivative of $\displaystyle \begin{align*} 3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) } \end{align*}$?

To do this we should use implicit differentiation. If $\displaystyle \begin{align*} y = \arccot{(x)} \end{align*}$ then

$\displaystyle \begin{align*} \cot{(y)} &= x \\ \frac{\cos{(y)}}{\sin{(y)}} &= x \\ \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{\cos{(y)}}{\sin{(y)}} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left( x \right) \\ \frac{\mathrm{d}}{\mathrm{d}y} \left[ \frac{\cos{(y)}}{\sin{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left\{ \frac{\sin{(y)}\left[ -\sin{(y)} \right] - \cos{(y)}\cos{(y)}}{\left[ \sin^2{(y)} \right] ^2 } \right\} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left\{ \frac{ - \left[ \sin^2{(y)} + \cos^2{(y)} \right] }{\sin^2{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left[ -\frac{1}{\sin^2{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ -\csc^2{(y)} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left[ 1 + \cot^2{(y)} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left( 1 + \left\{ \cot{ \left[ \arccot{(x)} \right] } \right\} ^2 \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left( 1 + x^2 \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= -\frac{1}{1 + x^2} \end{align*}$

Thus by the chain rule, we have

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \arccot{ \left( \frac{1}{x} \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ \arccot{ \left( x^{-1} \right) } \right] \\ &= -x^{-2} \left[ -\frac{1}{1 + \left( x^{-1} \right) ^2 } \right] \\ &= \frac{ x^{-2} }{1 + x^{-2}} \\ &= \frac{1}{x^2 + 1} \end{align*}$

and thus

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ 3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) } \right] &= -\frac{3}{1 + x^2} + \frac{3}{1 + x^2} \\ &= 0 \end{align*}$
 
Mathematics news on Phys.org
We could also observe that:

$$\cot^{-1}(x)+\cot^{-1}\left(\frac{1}{x}\right)=\cot^{-1}(x)+\tan^{-1}(x)$$

This is a constant, $$\pm\frac{\pi}{2}$$, for all real values of $x$, hence:

$$\frac{d}{dx}\left(\cot^{-1}(x)+\cot^{-1}\left(\frac{1}{x}\right)\right)=0$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top