Johnsy's question about finding a derivative via Facebook

  • Context: MHB 
  • Thread starter Thread starter Prove It
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
SUMMARY

The derivative of the function \(3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) }\) is calculated using implicit differentiation and the chain rule. The process reveals that the derivative simplifies to zero, indicating that the function is constant for all real values of \(x\). This conclusion is supported by the identity \(\cot^{-1}(x) + \cot^{-1}\left(\frac{1}{x}\right) = \frac{\pi}{2}\), confirming that the derivative is indeed zero.

PREREQUISITES
  • Understanding of implicit differentiation
  • Familiarity with the arccotangent function
  • Knowledge of the chain rule in calculus
  • Basic trigonometric identities
NEXT STEPS
  • Study implicit differentiation techniques in calculus
  • Explore the properties of inverse trigonometric functions
  • Learn about the chain rule and its applications in differentiation
  • Review trigonometric identities and their proofs
USEFUL FOR

Students and educators in mathematics, particularly those focusing on calculus and trigonometry, as well as anyone seeking to deepen their understanding of derivative calculations involving inverse trigonometric functions.

Prove It
Gold Member
MHB
Messages
1,434
Reaction score
20
How do we find the derivative of $\displaystyle \begin{align*} 3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) } \end{align*}$?

To do this we should use implicit differentiation. If $\displaystyle \begin{align*} y = \arccot{(x)} \end{align*}$ then

$\displaystyle \begin{align*} \cot{(y)} &= x \\ \frac{\cos{(y)}}{\sin{(y)}} &= x \\ \frac{\mathrm{d}}{\mathrm{d}x} \left[ \frac{\cos{(y)}}{\sin{(y)}} \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left( x \right) \\ \frac{\mathrm{d}}{\mathrm{d}y} \left[ \frac{\cos{(y)}}{\sin{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left\{ \frac{\sin{(y)}\left[ -\sin{(y)} \right] - \cos{(y)}\cos{(y)}}{\left[ \sin^2{(y)} \right] ^2 } \right\} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left\{ \frac{ - \left[ \sin^2{(y)} + \cos^2{(y)} \right] }{\sin^2{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \left[ -\frac{1}{\sin^2{(y)}} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ -\csc^2{(y)} \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left[ 1 + \cot^2{(y)} \right] \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left( 1 + \left\{ \cot{ \left[ \arccot{(x)} \right] } \right\} ^2 \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ - \left( 1 + x^2 \right) \, \frac{\mathrm{d}y}{\mathrm{d}x} &= 1 \\ \frac{\mathrm{d}y}{\mathrm{d}x} &= -\frac{1}{1 + x^2} \end{align*}$

Thus by the chain rule, we have

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ \arccot{ \left( \frac{1}{x} \right) } \right] &= \frac{\mathrm{d}}{\mathrm{d}x} \left[ \arccot{ \left( x^{-1} \right) } \right] \\ &= -x^{-2} \left[ -\frac{1}{1 + \left( x^{-1} \right) ^2 } \right] \\ &= \frac{ x^{-2} }{1 + x^{-2}} \\ &= \frac{1}{x^2 + 1} \end{align*}$

and thus

$\displaystyle \begin{align*} \frac{\mathrm{d}}{\mathrm{d}x} \left[ 3\arccot{(x)} + 3\arccot{ \left( \frac{1}{x} \right) } \right] &= -\frac{3}{1 + x^2} + \frac{3}{1 + x^2} \\ &= 0 \end{align*}$
 
Physics news on Phys.org
We could also observe that:

$$\cot^{-1}(x)+\cot^{-1}\left(\frac{1}{x}\right)=\cot^{-1}(x)+\tan^{-1}(x)$$

This is a constant, $$\pm\frac{\pi}{2}$$, for all real values of $x$, hence:

$$\frac{d}{dx}\left(\cot^{-1}(x)+\cot^{-1}\left(\frac{1}{x}\right)\right)=0$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
11K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 1 ·
Replies
1
Views
10K
  • · Replies 2 ·
Replies
2
Views
10K
  • · Replies 1 ·
Replies
1
Views
11K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 4 ·
Replies
4
Views
11K
  • · Replies 2 ·
Replies
2
Views
6K
  • · Replies 1 ·
Replies
1
Views
10K