MHB Jordan Normal Form of Unitary Transformation

Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Recently I encountered the following problem. Hope you can confirm whether my method is correct. My answer seems so trivial and I have doubts whether it is correct.

Problem:

Find the Jordan normal form of a unitary linear transformation.

My Solution:

Now if we take the matrix of a unitary linear transformation (say \(A\)) it could be diagonalized; \(A=VDV^*\), where \(D\) is a diagonal unitary matrix and \(V\) is a unitary matrix. So therefore the Jordan normal form is obviously \(D\), where the diagonal elements consist of the eigenvalues of \(A\).
 
Physics news on Phys.org
Sudharaka said:
Hi everyone, :)

Recently I encountered the following problem. Hope you can confirm whether my method is correct. My answer seems so trivial and I have doubts whether it is correct.

Problem:

Find the Jordan normal form of a unitary linear transformation.

My Solution:

Now if we take the matrix of a unitary linear transformation (say \(A\)) it could be diagonalized; \(A=VDV^*\), where \(D\) is a diagonal unitary matrix and \(V\) is a unitary matrix. So therefore the Jordan normal form is obviously \(D\), where the diagonal elements consist of the eigenvalues of \(A\).
Yes, that is absolutely correct. The result is not trivial, but all the difficulty is hidden in the statement that a unitary matrix can be diagonalised. If you are allowed to quote that, then the rest is easy. (You could add that the diagonal elements of the Jordan form must all have absolute value $1$.)
 
Opalg said:
Yes, that is absolutely correct. The result is not trivial, but all the difficulty is hidden in the statement that a unitary matrix can be diagonalised. If you are allowed to quote that, then the rest is easy. (You could add that the diagonal elements of the Jordan form must all have absolute value $1$.)

Thanks very much for the detailed explanation. I really appreciate it. :)
 
I asked online questions about Proposition 2.1.1: The answer I got is the following: I have some questions about the answer I got. When the person answering says: ##1.## Is the map ##\mathfrak{q}\mapsto \mathfrak{q} A _\mathfrak{p}## from ##A\setminus \mathfrak{p}\to A_\mathfrak{p}##? But I don't understand what the author meant for the rest of the sentence in mathematical notation: ##2.## In the next statement where the author says: How is ##A\to...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...

Similar threads

Replies
1
Views
2K
Replies
7
Views
2K
Replies
2
Views
2K
Replies
23
Views
4K
Replies
11
Views
5K
Replies
11
Views
4K
Back
Top