MHB Kannan mapping and quasi-nonexpansive mapping

  • Thread starter Thread starter ozkan12
  • Start date Start date
  • Tags Tags
    Mapping
Click For Summary
Kannan mapping is defined in a complete metric space where the distance between images under the mapping satisfies a specific contraction condition. A quasi-nonexpansive mapping requires at least one fixed point and ensures that the distance from any point to this fixed point is not increased by the mapping. It is established that every Kannan mapping is also a quasi-nonexpansive operator, as the strict inequality in the proof can be replaced with a non-strict inequality. The discussion explores the logical implications of using "<" versus "≤" in mathematical proofs, clarifying that if one condition holds, the other can also be inferred. The conversation emphasizes the nuances of these mathematical definitions and their implications.
ozkan12
Messages
145
Reaction score
0
Definition of Kannan Mapping

Let (X,d) be a complete metric space...İf for each $x,y\in X$ following condition holds, then $T:X\to X$ is Kannan mapping

$d(Tx,Ty)\le\alpha\left[d\left(x,Tx\right),d(\left(y,Ty\right)\right)]$ $\alpha\in[0,\frac{1}{2})$

Definition of Quasi-Nonexpansive Mapping

An operator $T:X\to X$ is said to be quasi nonexpansive if T has at least one fixed point in X and, for each fixed point p, we have

$d(Tx,p)\le d(x,p)$ for each x $\in$ X.

İf T is a Kannan mapping, then T is a quasi nonexpansive operator.Proof:

İndeed, if T is a Kannan operator, then from definition of Kannan mapping with y=p in set of fixed point of T we get

$d(Tx,p)\le\alpha d\left(x,Tx\right)\le\alpha\left[d(x,p)+d(p,Tx)\right]$ and hence

$d\left(Tx,p\right)\le\frac{\alpha}{1-\alpha}d\left(x,p\right)<d(x,p)$İn there we get d(Tx,p)<d(x,p)...But in definition of quasi nonexpansive operator we use "$\le$"...But in last step we use "<" İn this case how we say that every kannan mapping is a quasi non expansive operator
 
Physics news on Phys.org
$< \; \implies \; \le$. That is, $<$ is a stronger condition than $\le$, and implies it. You could just as well have used the weaker $\le$ in the very last line.
 
Dear Ackbach,

First of all, Thank you for your attention...

How "$<$" implies $\le$ ? İn nigt, I thougt that how we write this inequeality...Then I found some articles...İf we take p=x in

$$d(Tx,p)<d(x,p)$$ then we get $d(Tx,p)=d(x,p)=0$...So, we get $d(Tx,p)\le d(x,p)$...

But, how "$<\implies \le$" ? I didnt understand...as you say I can use " $\le$" in last inequeality...That is, I can write $d\left(Tx,p\right)\le d\left(x,p\right)$...İs this true ? Thank you for your attention..$<\implies \le$
 
Last edited:
This is a property of logic. In Natural Deduction, we call it the "Disjunction Introduction Rule". Copi calls it something else. It goes like this:

A implies A or B. If A is true, then A or B is true.

If $x<y$ is true, then it is also true that either $x<y$ or $x=y$. That is, if $x<y$ is true, then $x\le y$. Therefore, $x<y \; \implies \; x\le y$. So, my shorthand notation there, $< \; \implies \; \le$ is what I meant.
 
Dear Ackbach,

That is, we can use $\le$ instead of $<$ in last inequality...

Also, can we say that if we take x=p, we will obtain last inequality ? Thank you for your attention...
 
Dear Ackbach

İf $x\le y$ then we can say $x<y$ or $x=y$..İn my research it is not as you say...
 
If $x\le y$, then you can say $x<y$ or $x=y$, but you don't know which. It could be either. You definitely CANNOT narrow it down to only one of those two possibilities.
 
yes, this is true...but we don't say if $x<y$ then $x<y$ or $x=y$ ...And still in first post is strange for me ...
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
955
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 0 ·
Replies
0
Views
335
Replies
8
Views
3K
  • · Replies 2 ·
Replies
2
Views
822
  • · Replies 2 ·
Replies
2
Views
2K