MHB Katlynsbirds' question at Yahoo Answers regarding inverse trigonometric identity

AI Thread Summary
The identity to prove is cot inverse of x equals sin inverse of 1 over the square root of 1 plus x squared. By letting theta equal cot inverse of x, it follows that x equals cot(theta). A diagram illustrates that sin(theta) equals 1 over the square root of 1 plus x squared, leading to the conclusion that theta equals sin inverse of 1 over the square root of 1 plus x squared. This confirms the identity as required. The discussion encourages further trigonometry problems to be shared in the forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Prove the identity, pre calc!?

cot inverse= sin inverse of 1/sqr of 1+x^2

Here is a link to the question:

Prove the identity, pre calc!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: katlynsbirds' question at Yahoo! Answers regarding inverse trignometric identity

Hello katlynsbirds,

We are given to prove:

$$\cot^{-1}(x)=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

Let's let $$\theta=\cot^{-1}(x)\,\therefore\,x=\cot(\theta)$$, and now please refer to this diagram:

https://www.physicsforums.com/attachments/765._xfImport

We see that $$\cot(\theta)=\frac{x}{1}=x$$ and we can also see that:

$$\sin(\theta)=\frac{1}{\sqrt{1+x^2}}\,\therefore\, \theta=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

and so we may conclude:

$$\theta=\cot^{-1}(x)=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

Shown as desired.

To katlynsbirds and any other guests viewing this topic I invite and encourage you to post other trigonometry problems here in our http://www.mathhelpboards.com/f12/ forum.

Best Regards,

Mark.
 

Attachments

  • katlynsbirds.jpg
    katlynsbirds.jpg
    3.5 KB · Views: 92
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top