MHB Katlynsbirds' question at Yahoo Answers regarding inverse trigonometric identity

Click For Summary
The identity to prove is cot inverse of x equals sin inverse of 1 over the square root of 1 plus x squared. By letting theta equal cot inverse of x, it follows that x equals cot(theta). A diagram illustrates that sin(theta) equals 1 over the square root of 1 plus x squared, leading to the conclusion that theta equals sin inverse of 1 over the square root of 1 plus x squared. This confirms the identity as required. The discussion encourages further trigonometry problems to be shared in the forum.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Prove the identity, pre calc!?

cot inverse= sin inverse of 1/sqr of 1+x^2

Here is a link to the question:

Prove the identity, pre calc!? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Re: katlynsbirds' question at Yahoo! Answers regarding inverse trignometric identity

Hello katlynsbirds,

We are given to prove:

$$\cot^{-1}(x)=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

Let's let $$\theta=\cot^{-1}(x)\,\therefore\,x=\cot(\theta)$$, and now please refer to this diagram:

https://www.physicsforums.com/attachments/765._xfImport

We see that $$\cot(\theta)=\frac{x}{1}=x$$ and we can also see that:

$$\sin(\theta)=\frac{1}{\sqrt{1+x^2}}\,\therefore\, \theta=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

and so we may conclude:

$$\theta=\cot^{-1}(x)=\sin^{-1}\left(\frac{1}{\sqrt{1+x^2}} \right)$$

Shown as desired.

To katlynsbirds and any other guests viewing this topic I invite and encourage you to post other trigonometry problems here in our http://www.mathhelpboards.com/f12/ forum.

Best Regards,

Mark.
 

Attachments

  • katlynsbirds.jpg
    katlynsbirds.jpg
    3.5 KB · Views: 101
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 28 ·
Replies
28
Views
3K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K