MHB Kinematics, time taken to a wall disappear

Fantini
Gold Member
MHB
Messages
267
Reaction score
0
I'm posting this because I disagree with the answer. Here's the question.

You are in a train that is traveling at $3.0$ m/s along a straight horizontal railroad. Very close and parallel to the railroad there exists a wall with upwards inclination of $12^{\circ}$ with the horizontal. Looking through the window ($0.9$ m tall and $2.0$ m wide) from its compartment, the train is moving to the left. The superior face of the wall appears first at edge $A$ of the window and finally disappears at edge $B$ of the window. How much time passes between the appearance and disappearance of the superior face of the wall?

The book gives the answer as $2.1$ s, but I find $3.5$ s. There is a picture but I'll have to upload it later. I'll add it to this post together with my thoughts on the problem after I sleep. :)
 
Mathematics news on Phys.org
Fantini said:
I'm posting this because I disagree with the answer. Here's the question.

You are in a train that is traveling at $3.0$ m/s along a straight horizontal railroad. Very close and parallel to the railroad there exists a wall with upwards inclination of $12^{\circ}$ with the horizontal. Looking through the window ($0.9$ m tall and $2.0$ m wide) from its compartment, the train is moving to the left. The superior face of the wall appears first at edge $A$ of the window and finally disappears at edge $B$ of the window. How much time passes between the appearance and disappearance of the superior face of the wall?

The book gives the answer as $2.1$ s, but I find $3.5$ s. There is a picture but I'll have to upload it later. I'll add it to this post together with my thoughts on the problem after I sleep. :)

After making a guess as to the shape and positioning of the wall, I'm getting $2.1\text{ s}$.
Hmm. I can also see how $3.5\text{ s}$ can come out.
It all depends on the shape of the wall and the wording superior face.

I'll explain after you add the picture and post your thoughts. (Wink)
 
I know the image is too big. Sorry about that.

The distance point $A$ travels is $d$, which is the lower side of the right triangle given by point $B$, the line drawn and the direction traveled by $A$, plus the width of the train, $2$ m. Therefore the time taken will be $$t = \frac{d+2}{v} = \frac{\frac{0.9}{\tan(12^{\circ})}+2}{3} \approx 3.5 \text{ s}.$$ I've checked and the answer given coincides with a situation where we discount the time taken to travel the width of the train, that is, $$t = \frac{d-2}{v} \approx 2.1 \text{ s}.$$ Is my interpretation correct?
HH51Mz2.png
 
Looks fine, except that I find that:

$$t = \frac{\frac{0.9}{\tan(12^{\circ})}+2}{3} \approx 2.1 \text{ s}$$

See W|A.
 
are-you-wizard.jpg


Could I have already become insane? ;) I think I typed the wrong commands in Mathematica. I'm not that bad at kinematics afterall. Thanks ILS!
 
Fantini said:
Could I have already become insane? ;) I think I typed the wrong commands in Mathematica. I'm not that bad at kinematics afterall. Thanks ILS!

Yes. I'm a wizard.
But mind you, I'm trying to keep a low profile. ;)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top