MHB Kyra's question at Yahoo Answers regarding linear difference equations

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Difference Linear
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Math hmk help asap?

help.,, Homework .,, thank you :))

If the second differences are the same, then the function is:
A. linear
B. quadratic
C. exponential
D. neither

Here is a link to the question:

Math hmk help asap? - Yahoo! Answers

I have posted a link there to this topic so the Op can find my response.
 
Mathematics news on Phys.org
Re: Kyra's question at Yahoo! Answers regardin linear difference equations

Hello Kyra,

Let the $n$th term of the sequence be given by $A_n$. If the second difference is constant, then we may state:

$$\left(A_{n}-A_{n-1} \right)-\left(A_{n-1}-A_{n-2} \right)=k$$ where $$0\ne k\in\mathbb{R}$$

Combining like terms, we may arrange this as the inhomogeneous linear recurrence:

(1) $$A_{n}=2A_{n-1}-A_{n-2}+k$$

We may increase the indices by 1, to prepare for symbolic differencing:

(2) $$A_{n+1}=2A_{n}-A_{n-1}+k$$

Subtracting (1) from (2), we obtain the homogeneous linear recurrence:

$$A_{n+1}=3A_{n}-3A_{n-1}+A_{n-2}$$

The characteristic equation is then:

$$r^3-3r^2+3r-1=(r-1)^3=0$$

Since the root $r=1$ is of multiplcity 3, we know the closed form will be:

$$A_n=k_1+k_2n+k_3n^2$$

We see then that the closed form is quadratic, hence B is the answer.

To Kyra and any other guest viewing this topic, I invite and encourage you to post other difference equation problems in our http://www.mathhelpboards.com/f15/ forum.

Best Regards,

Mark.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top