Laplace Transform, Finding solution: y′′+4y′+4y=f(t)

Click For Summary
SUMMARY

The discussion focuses on solving the differential equation y′′ + 4y′ + 4y = f(t) with f(t) defined as cos(ωt) for 0 < t < π and 0 for t > π, under the initial conditions y(0) = 0 and y'(0) = 1. The Heaviside function is utilized to express f(t) as f(t) = cos(ωt) - uπ(t)cos(ωt). The Laplace transform is applied, leading to the equation (s + 2)²Y(s) = (s/(s² + ω²) - e^(-πs)cos(ωπ)(s/(s² + ω²)) + e^(-πs)sin(ωπ)(ω/(s² + ω²)) + 1. The final expression for Y(s) is derived, which can be further simplified using partial fractions for the inverse Laplace transformation.

PREREQUISITES
  • Understanding of Laplace transforms, specifically the properties of linearity and the Heaviside function.
  • Familiarity with solving second-order linear differential equations with constant coefficients.
  • Knowledge of initial value problems and how to apply initial conditions in Laplace transforms.
  • Ability to manipulate complex fractions and perform partial fraction decomposition.
NEXT STEPS
  • Study the application of the Heaviside function in piecewise-defined functions.
  • Learn about the inverse Laplace transform techniques, particularly for functions involving exponential decay.
  • Explore the method of partial fractions in detail to simplify complex rational expressions.
  • Investigate the physical interpretations of solutions to differential equations in the context of forced oscillations.
USEFUL FOR

Mathematicians, engineers, and physics students who are solving differential equations, particularly those involving Laplace transforms and initial value problems.

jakejakejake
Messages
9
Reaction score
0
y′′+4y′+4y=f(t)
where f(t)=cos(ωt) if 0<t<π and f(t)=0 if t>π?
The initial conditions are y(0) = 0 , y'(0) = 1

I know that f(t)=cos(ωt)−uπ(t)cos(ωt), the heaviside equation.

AND ω is allowed to vary, supposed to find the general solution, i.e. f(t) in terms of ω

I think that after applying Laplace to both sides, I get: (s + 2)² * F(s) - 1 = s / [ s² + w²] e^(-πs) * [s / (s² + ω²)] But I'm still not sure where to go from here...

Thanks in advance!
 
Physics news on Phys.org
jakejakejake said:
y′′+4y′+4y=f(t)
where f(t)=cos(ωt) if 0<t<π and f(t)=0 if t>π?
The initial conditions are y(0) = 0 , y'(0) = 1

I know that f(t)=cos(ωt)−uπ(t)cos(ωt), the heaviside equation.

AND ω is allowed to vary, supposed to find the general solution, i.e. f(t) in terms of ω

I think that after applying Laplace to both sides, I get: (s + 2)² * F(s) - 1 = s / [ s² + w²] e^(-πs) * [s / (s² + ω²)] But I'm still not sure where to go from here...

Thanks in advance!

$$f(t)=\cos{( \omega t)} - u_{\pi}(t) \cos{( \omega t)}$$$$\mathcal{L}(y)=Y(s)$$

$$\mathcal{L}(y')=sY(s)-y(0)=sY(s)$$

$$\mathcal{L}(y'')=s^2Y(s)-sy(0)-y'(0)=s^2Y(s)-1$$

$$\mathcal{L}(f(t))=\mathcal{L}(\cos{( \omega t)}-u_{\pi}(t) \cos{(\omega t)} ) = \\
\mathcal{L}(\cos{( \omega t)})-\mathcal{L}(u_{\pi}(t) \cos{(\omega t)}) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega (t+\pi))}) =
\\ \frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega t+\omega \pi)}) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega t)} \cos{(\omega \pi)}-\sin{(\omega t)} \sin{(\omega \pi)})= \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\mathcal{L}(\cos{(\omega t)}) +e^{-\pi s}\sin{(\omega \pi)}\mathcal{L}(\sin{(\omega t)} ) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}$$Therefore,

$$y''+4y'+4y=f(t) \overset{\mathcal{L}}{\Rightarrow } \\ s^2Y(s)-1+4sY(s)+4Y(s) =
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}$$

$$\Rightarrow (s^2+4s+4)Y(s) = \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1$$

$$\Rightarrow (s+2)^2Y(s) = \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1$$

$$\Rightarrow Y(s)= \frac{1}{(s+2)^2} \left ( \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1\right )$$

$$\Rightarrow Y(s) =\frac{1}{(s+2)^2} \frac{s}{s^2+\omega^2}-e^{-\pi s} \frac{1}{(s+2)^2}\cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\frac{1}{(s+2)^2} \sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+\frac{1}{(s+2)^2}$$

Using partial fractions apply the inverse Laplace Transformation.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K