MHB Laplace Transform, Finding solution: y′′+4y′+4y=f(t)

Click For Summary
The discussion revolves around solving the differential equation y'' + 4y' + 4y = f(t), where f(t) is defined as cos(ωt) for 0 < t < π and 0 for t > π, with initial conditions y(0) = 0 and y'(0) = 1. The use of the Laplace transform is suggested to find the general solution, leading to the transformed equation involving Y(s) and f(t). The transformation yields Y(s) expressed in terms of ω, incorporating the effects of the Heaviside function. The final step involves applying partial fractions to facilitate the inverse Laplace transformation to obtain y(t).
jakejakejake
Messages
9
Reaction score
0
y′′+4y′+4y=f(t)
where f(t)=cos(ωt) if 0<t<π and f(t)=0 if t>π?
The initial conditions are y(0) = 0 , y'(0) = 1

I know that f(t)=cos(ωt)−uπ(t)cos(ωt), the heaviside equation.

AND ω is allowed to vary, supposed to find the general solution, i.e. f(t) in terms of ω

I think that after applying Laplace to both sides, I get: (s + 2)² * F(s) - 1 = s / [ s² + w²] e^(-πs) * [s / (s² + ω²)] But I'm still not sure where to go from here...

Thanks in advance!
 
Physics news on Phys.org
jakejakejake said:
y′′+4y′+4y=f(t)
where f(t)=cos(ωt) if 0<t<π and f(t)=0 if t>π?
The initial conditions are y(0) = 0 , y'(0) = 1

I know that f(t)=cos(ωt)−uπ(t)cos(ωt), the heaviside equation.

AND ω is allowed to vary, supposed to find the general solution, i.e. f(t) in terms of ω

I think that after applying Laplace to both sides, I get: (s + 2)² * F(s) - 1 = s / [ s² + w²] e^(-πs) * [s / (s² + ω²)] But I'm still not sure where to go from here...

Thanks in advance!

$$f(t)=\cos{( \omega t)} - u_{\pi}(t) \cos{( \omega t)}$$$$\mathcal{L}(y)=Y(s)$$

$$\mathcal{L}(y')=sY(s)-y(0)=sY(s)$$

$$\mathcal{L}(y'')=s^2Y(s)-sy(0)-y'(0)=s^2Y(s)-1$$

$$\mathcal{L}(f(t))=\mathcal{L}(\cos{( \omega t)}-u_{\pi}(t) \cos{(\omega t)} ) = \\
\mathcal{L}(\cos{( \omega t)})-\mathcal{L}(u_{\pi}(t) \cos{(\omega t)}) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega (t+\pi))}) =
\\ \frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega t+\omega \pi)}) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \mathcal{L}(\cos{(\omega t)} \cos{(\omega \pi)}-\sin{(\omega t)} \sin{(\omega \pi)})= \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\mathcal{L}(\cos{(\omega t)}) +e^{-\pi s}\sin{(\omega \pi)}\mathcal{L}(\sin{(\omega t)} ) = \\
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}$$Therefore,

$$y''+4y'+4y=f(t) \overset{\mathcal{L}}{\Rightarrow } \\ s^2Y(s)-1+4sY(s)+4Y(s) =
\frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}$$

$$\Rightarrow (s^2+4s+4)Y(s) = \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1$$

$$\Rightarrow (s+2)^2Y(s) = \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1$$

$$\Rightarrow Y(s)= \frac{1}{(s+2)^2} \left ( \frac{s}{s^2+\omega^2}-e^{-\pi s} \cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+1\right )$$

$$\Rightarrow Y(s) =\frac{1}{(s+2)^2} \frac{s}{s^2+\omega^2}-e^{-\pi s} \frac{1}{(s+2)^2}\cos{(\omega \pi)}\frac{s}{s^2+\omega^2} +e^{-\pi s}\frac{1}{(s+2)^2} \sin{(\omega \pi)}\frac{\omega}{s^2+\omega^2}+\frac{1}{(s+2)^2}$$

Using partial fractions apply the inverse Laplace Transformation.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
5K
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 5 ·
Replies
5
Views
3K