I Laplace transform of a simple equation (Simple question)

LagrangeEuler
Messages
711
Reaction score
22
Lets consider very simple equation ##x''(t)=0## for ##x(0)=0##, ##x'(0)=0##. By employing Laplace transform I will get
s^2X(s)=0 where ##X(s)## is Laplace transform of ##x(t)##. Why then this is equivalent to
X(s)=0
why we do not consider ##s=0##?
 
Physics news on Phys.org
The solution is x(t)=0. Laplace transform of 0 is also 0.
 
I know that. I am asking you why we do not consider that for ##s=0##, ##X(s)## can be different from zero?
 
I do not think our problem is to get value of s to satisfy
s^2 X(s) = 0
because s is parameter transformed which varies from 0 to infinity in usual.
We should have interest on Laplace transform X(s) and observe that it returns zero for any s.
 
LagrangeEuler said:
I am asking you why we do not consider that for s = 0, X(s) can be different from zero?

The definition <br /> X(s) \equiv \int_0^\infty x(t)e^{-st}\,dt is not valid for every s \in \mathbb{C} (in general it's only valid for s with sufficiently large and positive real part). Where that definition is not valid, we must define X(s) by analytic continuation from the domain where it is valid. In this case, the equation s^2X(s) = 0 obtained from integrating x&#039;&#039;(t)e^{-st} is only valid for \operatorname{Re}(s) &gt; 0. The unique analytic extension of X to \operatorname{Re}(s) \leq 0 then gives X(s) \equiv 0 everywhere.
 
I have the equation ##F^x=m\frac {d}{dt}(\gamma v^x)##, where ##\gamma## is the Lorentz factor, and ##x## is a superscript, not an exponent. In my textbook the solution is given as ##\frac {F^x}{m}t=\frac {v^x}{\sqrt {1-v^{x^2}/c^2}}##. What bothers me is, when I separate the variables I get ##\frac {F^x}{m}dt=d(\gamma v^x)##. Can I simply consider ##d(\gamma v^x)## the variable of integration without any further considerations? Can I simply make the substitution ##\gamma v^x = u## and then...

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 7 ·
Replies
7
Views
6K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K