Laplace Transforms (proofs of)

Click For Summary

Discussion Overview

The discussion focuses on the proofs of various properties and transforms associated with Laplace transforms, including linearity, specific function transforms, and relationships involving the Gamma function and logarithmic terms. The scope includes theoretical aspects and mathematical reasoning related to the application of Laplace transforms in different contexts.

Discussion Character

  • Technical explanation
  • Mathematical reasoning

Main Points Raised

  • Some participants present the definition of the Laplace transform and its notation, using "w" instead of the standard "s".
  • Proposition 01 establishes that the Laplace transform of the constant function 1 is $$\frac{1}{w}$$ for $$w > 0$$.
  • Proposition 02 asserts the linearity of the Laplace transform, stating that $$\mathfrak{L}(a\, f + b\, g) = a\, \mathfrak{L}(f) + b\, \mathfrak{L}(g)$$ for scalar constants $$a$$ and $$b$$.
  • Proposition 03 shows that the Laplace transform of $$e^{ax}$$ is $$\frac{1}{w-a}$$, provided $$w-a > 0$$.
  • Proposition 04 provides the transforms for powers of $$x$$, stating $$\mathfrak{L}(x^n) = \frac{n!}{w^{n+1}}$$ for natural numbers and $$\mathfrak{L}(x^a) = \frac{\Gamma(a+1)}{w^{a+1}}$$ for positive real numbers.
  • Proposition 05 derives the transforms for sine and cosine functions, yielding $$\mathfrak{L}(\sin \omega x) = \frac{\omega}{w^2+\omega^2}$$ and $$\mathfrak{L}(\cos \omega x) = \frac{w}{w^2+\omega^2}$$.
  • Proposition 06 provides the Laplace transforms for hyperbolic sine and cosine functions, stating $$\mathfrak{L}(\sinh ax) = \frac{a}{w^2-a^2}$$ and $$\mathfrak{L}(\cosh ax) = \frac{w}{w^2-a^2}$$ under the condition $$w-a > 0$$.
  • Proposition 07 discusses the transform of the product of a power function and an exponential function, yielding $$\mathfrak{L}(x^{\lambda -1}e^{ax}) = \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}$$ for certain conditions on $$w$$ and $$a$$.
  • Proposition 08 extends the discussion to include logarithmic terms, providing a formula for $$\mathfrak{L}(x^{\lambda -1}e^{ax}\log x)$$ involving the Digamma function.

Areas of Agreement / Disagreement

Participants present various propositions and proofs regarding Laplace transforms, but there is no indication of disagreement or consensus on the interpretations or implications of these proofs. The discussion remains focused on the presentation of mathematical results without resolving any competing views.

Contextual Notes

Some propositions depend on specific conditions for the variables involved, such as the real parts of $$w$$ and $$a$$, which are not universally applicable without those constraints. Additionally, the proofs rely on the properties of the Gamma function and integration techniques that may not be explicitly detailed in every case.

DreamWeaver
Messages
297
Reaction score
0
I should state, from the outset, that this tutorial is NOT going to go into any great detail about the theory and applications of Laplace transforms. Some of the aforementioned will be discussed in a cursory way, but the aim here is merely to provide a selection of proofs for common transforms. That said, on with the show...Throughout, I will use the notation$$F(w) = \mathfrak{L}(f) = \int_{0}^{\infty} e^{-wx}f(x)\, dx$$and$$f(w) = \mathfrak{L}^{-1}(F)$$NOTE:In the field of Laplace transforms, it is standard practice to use "s" rather than the "w" I will use here. Consider the following expressions of the same transform:$$F(w) = \mathfrak{L}(f) = \int_{0}^{\infty} e^{-wx}f(x)\, dx$$$$F(s) = \mathfrak{L}(f) = \int_{0}^{\infty} e^{-sx}f(x)\, dx$$Personally, I think that superscript of "s" in the second example is far less legible than the equivalent "w" in the first. Hence me using "w" throughout this thread.----------------
Proposition 01:
----------------
Let $$f(x)=1$$ (the unit constant), then$$\mathfrak{L}(1) = \int_0^{\infty} e^{-wx}dx = \frac{1}{w} $$Proof:$$\mathfrak{L}(1) = \int_0^{\infty} e^{-wx}dx = -\frac{1}{w}\, e^{-wx}\, \Bigg|_0^{\infty}$$Hence when $$w>0$$ this becomes$$-\frac{1}{w}\, \left[ \lim_{z\to \infty} e^{-z} - \lim_{z\to 0} e^{-z}\right] = -\frac{1}{w}\, \left[ \frac{1}{e^{\infty}} - \frac{1}{e^0} \right] = \frac{1}{w}$$As was to be shown. $$\Box$$
----------------
Proposition 02:
----------------
Linearity of the Laplace transform: Let $$a$$ and $$b$$ be scalar constants, and $$f$$ and $$g$$ be functions of the variable, then:

$$\mathfrak{L}(a\, f +b\, g) = a\, \mathfrak{L}(f) + b\, \mathfrak{L}(g)$$This follows directly from the linearity of integrals:

$$\int (a\, f(x) + b\, g(x) )\, dx = a\, \int f(x)\, dx + b\, \int g(x)\, dx. \, \Box$$
----------------
Proposition 03:
----------------
Let $$x \ge 0$$, then when $$f(x)=e^{ax}$$, and $$w-a>0$$:$$ \mathfrak{L}(e^{ax}) = \frac{1}{w-a}$$Proof:$$\mathfrak{L}(e^{ax}) = \int_0^{\infty} e^{ax}e^{-wx}\, dx = \int_0^{\infty} e^{-(w-a)x}\, dx=$$$$-\frac{1}{(w-a)}e^{-(w-a)x}\, \Bigg|_0^{\infty} = \frac{1}{w-a}$$Provided $$w-a > 0$$. The proposition is now proved. $$\Box$$
 
Last edited by a moderator:
Physics news on Phys.org
----------------
Proposition 04:
----------------
Let $$a \in \mathbb{R}^{+}$$ and $$n\in\mathbb{N}$$, then the following Laplace transforms hold:$${\color{BrickRed}\mathfrak{L}(x^n) = \frac{n!}{w^{n+1}} }$$

$${\color{BrickRed}\mathfrak{L}(x^a) = \frac{\Gamma(w+1)}{w^{a+1}} }$$Proof:We begin with the integral definition of the Euler Gamma function $$\Gamma(x)$$:$$\Gamma(x) = \int_0^{\infty}e^{-t}t^{x-1}\, dt$$Replacing $$x$$ with $$x+1$$ and then performing an integration by parts, we obtain: $$\Gamma(x+1) = \int_0^{\infty}e^{-t}t^{x}\, dt = $$

$$-e^{-t}t^x\, \Bigg|_0^{\infty} + x\, \int_0^{\infty}e^{-t}t^{x-1}\, dt$$The limiting term on the L.H.S. tends to zero, while the integral term on the R.H.S. is, by the definition of the Euler Gamma function, equal to $$x\, \Gamma(x)$$.

Hence

$$\Gamma(1+x) = x\, \Gamma(x)$$Next, set x=1 in the integral representation of the Euler Gamma function:$$\Gamma(1) = \int_0^{\infty}e^{-t}\, dt = -e^{-t}\, \Bigg|_0^{\infty} = 1$$So

$$\Gamma(1) =1$$

$$\Gamma(2) = 1\, \Gamma(1) = 1$$

$$\Gamma(3) = 2\, \Gamma(2) = 2$$

$$\Gamma(4) = 3\, \Gamma(3) = 6$$And more generally, $$\Gamma(m+1) = m!$$Next, assume that $$a>0$$, as per part 2 of proposition 4. Then $$\mathfrak{L}(x^a) = \int_0^{\infty}e^{-wx}x^a\,dx$$Apply the substitution $$t=wx, dt=wdx\, \Rightarrow$$$$\mathfrak{L}(x^a) = \frac{1}{w}\, \int_0^{\infty} e^{-t}\left(\frac{t}{w}\right)^a\, dt = \frac{1}{w^{a+1}}\, \int_0^{\infty}e^{-t}t^{(a+1)-1}\, dt = \frac{\Gamma(w+1)}{w^{a+1}}$$This proves part 2 of proposition 4. Replacing the positive, real number $$a$$ with the natural number $$n\in\mathbb{N}$$, and then using $$\Gamma(n+1)=n!$$ proves the first part. $$\Box$$
 
Last edited:
----------------
Proposition 05:
----------------
$${\color{BrickRed}\mathfrak{L}(\sin \omega x) = \int_0^{\infty}e^{-wt}\sin \omega x\, dx = \frac{\omega}{w^2+\omega^2} }$$$${\color{BrickRed}\mathfrak{L}(\cos \omega x) = \int_0^{\infty}e^{-wt}\cos \omega x\, dx = \frac{w}{w^2+\omega^2} }$$Proof:Set $$a=i\omega$$ in proposition (03), then$$\mathfrak{L}(e^{i\omega x}) = \frac{1}{w-i\omega} = \frac{w+i\omega}{w^2+\omega^2} = \frac{w}{w^2+\omega^2} + \frac{i\omega}{w^2+\omega^2}$$Conversely, $$e^{i\omega x} = \cos \omega x + i\sin \omega x$$Hence, by proposition (02),$$\mathfrak{L}(e^{i\omega x}) = \mathfrak{L}(\cos \omega x) + i\, \mathfrak{L}(\sin \omega x)$$Equating the real and imaginary parts proves both parts of proposition (05). $$\Box$$
 
Last edited:
----------------
Proposition 06:
----------------
For $$w-a > 0$$:$${\color{BrickRed}\mathfrak{L}(\sinh ax) = \int_0^{\infty}e^{-wx}\sinh ax\, dx = \frac{a}{w^2-a^2} }$$$${\color{BrickRed}\mathfrak{L}(\cosh ax) = \int_0^{\infty}e^{-wx}\cosh ax\, dx = \frac{w}{w^2-a^2} }$$Proof:$$\sinh ax = \frac{e^{ax}-e^{-ax}}{2}$$

$$\cosh ax = \frac{e^{ax}+e^{-ax}}{2}$$Hence by propositions (03) and (02), $$\mathfrak{L}(\sinh ax) = \frac{1}{2}\mathfrak{L}(e^{ax}) - \frac{1}{2}\mathfrak{L}(e^{-ax}) = $$$$\frac{1}{2}\, \frac{1}{w-a} - \frac{1}{2}\, \frac{1}{w+a} = \frac{a}{w^2-a^2}$$The equivalent form for the Hyperbolic Cosine is proved in the same manner. $$\Box$$
 
Last edited:
----------------
Proposition 07:
----------------
Let $$\mathscr{Re}(w) > \mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then: $${\color{BrickRed}\mathfrak{L}(x^{\lambda -1}e^{ax}) = \frac{\Gamma(\lambda)}{(w-a)^{\lambda}} }$$Proof:$$\mathfrak{L} (x^{\lambda -1}e^{ax}) = \int_0^{\infty} e^{-wx}\, (x^{\lambda -1}e^{ax})\, dx = \int_0^{\infty} e^{-(w-a)x}x^{\lambda-1}\, dx$$This is almost a Euler Gamma function:$$\int_0^{\infty} e^{-(w-a)x}x^{\lambda-1}\, dx = \frac{1}{(w-a)}\, \int_0^{\infty} \left(\frac{t}{w-a} \right)^{\lambda-1}e^{-t}\, dt = $$$$\frac{1}{(w-a)^{\lambda}}\, \int_0^{\infty}e^{-t}t^{\lambda -1}\, dt = \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}$$This completes the proof. $$\Box$$

----------------
Corollary:
----------------
For $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then: $${\color{BrickRed}\mathfrak{L}(x^{\lambda -1}e^{-ax}) = \frac{\Gamma(\lambda)}{(w+a)^{\lambda}} }$$
 
Last edited:
----------------
Proposition 08:
----------------
$${\color{BrickRed}\mathfrak{L}(x^{\lambda -1}e^{ax}\log x) = \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] }$$Proof:Let $$\mathscr{Re}(w) > \mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then: $$\mathfrak{L}(x^{\lambda -1}e^{ax}) = \frac{\Gamma(\lambda)}{(w-a)^{\lambda}} \Rightarrow$$
$$\frac{d}{d\lambda} \mathfrak{L}(x^{\lambda -1}e^{ax}) = \mathfrak{L}'(x^{\lambda -1}e^{ax})= \frac{d}{d\lambda}\, \frac{\Gamma(\lambda)}{(w-a)^{\lambda}} = $$$$\frac{(w-a)^{\lambda} \Gamma'(\lambda) - (w-a)^{\lambda}\log(w-a) \Gamma(\lambda) }{(w-a)^{2\lambda}} = \frac{\Gamma'(\lambda) - \log(w-a) \Gamma(\lambda) }{(w-a)^{\lambda}} $$Defining the Digamma function $$\psi_0(z)$$ in the usual way, $$\psi_0(z)=\frac{d}{dz}\log\Gamma(z) = \frac{\Gamma'(z)}{\Gamma(z)}$$This becomes,$$\mathfrak{L}'(x^{\lambda -1}e^{ax})= \frac{\Gamma'(\lambda) - \log(w-a) \Gamma(\lambda) }{(w-a)^{\lambda}} =$$$$\frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg]$$Conversely, by the (usual) integral representation of the Laplace transform,$$\mathfrak{L}'(x^{\lambda -1}e^{ax})= \frac{d}{d\lambda}\, \int_0^{\infty}e^{-(w-a)x}x^{\lambda -1}\, dx = $$$$\int_0^{\infty}e^{-(w-a)x}x^{\lambda -1}(\log x)\, dx = \mathfrak{L}(x^{\lambda -1}e^{ax}\log x) $$Hence$$\mathfrak{L}(x^{\lambda -1}e^{ax}\log x) = \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg]$$
This completes the proof. $$\Box$$
----------------
Corollary:
----------------
$${\color{BrickRed}\mathfrak{L}(x^{\lambda -1}e^{-ax}\log x) = \frac{\Gamma(\lambda)}{(w+a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg] }$$This follows directly from propositions (07) and (08), provided that the conditions $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$ are satisfied.
 
Last edited:
----------------
Proposition 09:
----------------
Let $$\mathscr{Re}(w) > \mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then:$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}e^{ax}(\log x)^2) =}$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg\{ \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg]^2 + \psi_1(\lambda) \Bigg\} }$$And$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}e^{ax}(\log x)^3) =}$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg\{ \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg]^3 + 3\, \psi_1(\lambda)\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] + \psi_2(\lambda) \Bigg\} }$$
Proof:Proposition (08) can itself be differentiated - on both sides - multiple times, to give:$$\frac{d^m}{d\lambda^m}\, \mathfrak{L} (x^{\lambda-1}e^{ax}(\log x)) = \mathfrak{L}(x^{\lambda-1}e^{ax}(\log x)^{m+1}) = \frac{d^m}{d\lambda^m}\, \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] $$Since$$\frac{d^m}{d\lambda^m}\, \mathfrak{L} (x^{\lambda-1}e^{ax}(\log x)) = \frac{d^m}{d\lambda^m}\, \int_0^{\infty}e^{-(w-a)x}x^{\lambda-1}(\log x)\, dx = $$$$\int_0^{\infty} e^{-(w-a)x} (\log x)\, \left[ \frac{d^m}{d\lambda^m}\, x^{\lambda -1 }\right]\, dx = $$$$\int_0^{\infty}e^{-(w-a)} x^{\lambda-1}(\log x)^{m+1}\, dx = \mathfrak{L} (x^{\lambda-1}e^{ax}(\log x)^{m+1})$$The Polygamma functions are given by:$$\psi_m(z) = \frac{d^{m+1}}{dz^{m+1}}\, \log\Gamma(z)$$and so$$\psi_1(x) = \frac{d}{dx}\, \psi_0(x)$$

$$\psi_2(x) = \frac{d}{dx}\, \psi_1(x)$$

$$\psi_3(x) = \frac{d}{dx}\, \psi_2(x)$$Etc. Hence$$\mathfrak{L}(x^{\lambda-1}e^{ax}(\log x)^2) = \frac{d}{d\lambda}\, \frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] = $$$$\frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg]^2 +
\frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \psi_1(\lambda)$$
And$$\mathfrak{L}(x^{\lambda-1}e^{ax}(\log x)^3) = \frac{d}{d\lambda}\, = \frac{d}{d\lambda}\, \mathfrak{L}(x^{\lambda-1}e^{ax}(\log x)^2) = $$$$\frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg]^3 + \frac{3\, \Gamma(\lambda)}{(w-a)^{\lambda}}\, \psi_1(\lambda)\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] + $$$$\frac{\Gamma(\lambda)}{(w-a)^{\lambda}}\, \psi_2(\lambda)
$$This completes the proof. $$\Box$$----------------
Corollary:
----------------
$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}e^{-ax}(\log x)^2) = }$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{(w+a)^{\lambda}}\, \Bigg\{ \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg]^2 + \psi_1(\lambda) \Bigg\} }$$And$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}e^{-ax}(\log x)^3) = }$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{(w+a)^{\lambda}}\, \Bigg\{ \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg]^3 + 3\, \psi_1(\lambda)\, \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg] + \psi_2(\lambda) \Bigg\} }$$These follow directly from propositions (07), (08), and (09) above, provided that the conditions $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$ are satisfied.
 
Last edited:
----------------
Proposition 10:
----------------
For $$\mathscr{Re}(\lambda) > 0$$ and $$\mathscr{Re}(w) > 0$$:
Part 1:$${\color{BrickRed}\mathfrak{L}(x^{\lambda -1}\log x) = \frac{\Gamma(\lambda)}{w^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log w \Bigg] }$$
Part 2:$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}(\log x)^2) =}$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{w^{\lambda}}\, \Bigg\{ \Bigg[ \psi_0(\lambda) - \log w \Bigg]^2 + \psi_1(\lambda) \Bigg\} }$$
Part 3:$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}(\log x)^3) =}$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{w^{\lambda}}\, \Bigg\{ \Bigg[ \psi_0(\lambda) - \log w \Bigg]^3 + 3\, \psi_1(\lambda)\, \Bigg[ \psi_0(\lambda) - \log w \Bigg] + \psi_2(\lambda) \Bigg\} }$$
Proof:Set $$a=0$$ in propositions (08) and (09), or their corollaries. $$\Box$$
 
----------------
Proposition 11:
----------------
For $$\mathscr{Re}(w) > \mathscr{Re}(a)$$:$${\color{BrickRed} \mathfrak{L}\left( \frac{e^{ax}}{\sqrt{x}} \right) = \sqrt{ \frac{\pi}{w-a} } }$$
Proof:This follows directly by setting $$\lambda = 1/2$$ in proposition (07), but here's the full proof anyway:$$\mathfrak{L}\left( \frac{e^{ax}}{\sqrt{x}} \right) = \int_0^{\infty} \frac{e^{-(w-a)x}}{\sqrt{x}}\, dx = \frac{1}{(w-a)}\, \int_0^{\infty} \frac{e^{-t}}{ \sqrt{\frac{t}{(w-a)}} }\, dt =
$$$$\frac{1}{ \sqrt{w-a} }\, \int_0^{\infty}e^{-t}t^{1/2-1}\, dt = \frac{\Gamma\left( \tfrac{1}{2} \right) }{ \sqrt{w-a} } = \sqrt{ \frac{\pi}{w-a} }$$Since$$\Gamma\left( \tfrac{1}{2} \right) = \sqrt{\pi}$$$$\Box$$
 
  • #10
----------------
Proposition 12:
----------------
For $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$:$${\color{BrickRed} \mathfrak{L}\left( \frac{e^{-at}}{\sqrt{x}} \right) = \sqrt{ \frac{\pi}{w+a} }}$$Proof:


This is a corollary of proposition (11), where $$a$$ has been replaced with $$-a$$ (affecting the subsequent change of conditions: $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$).

$$\Box$$----------------
Proposition 13:
----------------
For $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$:$${\color{BrickRed} \mathfrak{L}\left( \frac{\sinh ax}{\sqrt{x} } \right) = \frac{\sqrt{\pi}}{2}\, \frac{\sqrt{w+a} -\sqrt{w-a} }{\sqrt{w^2-a^2}} }$$$${\color{BrickRed} \mathfrak{L}\left( \frac{\cosh ax}{\sqrt{x} } \right) = \frac{\sqrt{\pi}}{2}\, \frac{\sqrt{w+a} +\sqrt{w-a} }{\sqrt{w^2-a^2}} }$$
Proof:The case for $$\sinh ax$$ is proven directly. The case for $$\cosh ax$$ is identical in methodology.

Firstly, we have:$$\sinh ax = \frac{e^{ax}-e^{-ax}}{2}$$$$\cosh ax = \frac{e^{ax}+e^{-ax}}{2}$$Hence$$\mathfrak{L}\left( \frac{\sinh ax}{\sqrt{x}} \right) = \frac{1}{2}\, \mathfrak{L}\left( \frac{e^{ax}}{ \sqrt{x} } \right) - \frac{1}{2}\, \mathfrak{L}\left( \frac{e^{-ax}}{ \sqrt{x} } \right) = $$$$\frac{1}{2}\, \left[ \sqrt{ \frac{\pi}{w-a} } - \sqrt{ \frac{\pi}{w+a} }\right] = $$$$\frac{\sqrt{\pi}}{2}\, \frac{\sqrt{w+a} -\sqrt{w-a} }{\sqrt{w^2-a^2}}$$This completes the proof. $$\Box$$
 
  • #11
----------------
Proposition 14:
----------------
Let $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then:
Part 1:$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}\sinh ax) = \frac{\Gamma(\lambda)}{2}\, \frac{ (w+a)^{\lambda} - (w-a)^{\lambda} }{(w^2-a^2)^{\lambda}} }$$
Part 2:$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}\cosh ax) = \frac{\Gamma(\lambda)}{2}\, \frac{ (w+a)^{\lambda} + (w-a)^{\lambda} }{(w^2-a^2)^{\lambda}} }$$
Proof:$$\sinh ax = \frac{e^{ax}-e^{-ax}}{2}\, \Rightarrow$$$$\mathfrak{L}(x^{\lambda-1}\sinh ax) = \mathfrak{L}\left( \frac{x^{\lambda-1} e^{ax }}{2} \right) - \mathfrak{L}\left( \frac{x^{\lambda-1} e^{-ax }}{2} \right) = $$$$\frac{1}{2}\, \mathfrak{L} \left( x^{\lambda-1} e^{ax } \right) - \frac{1}{2}\, \mathfrak{L} \left( x^{\lambda-1} e^{-ax } \right) = $$$$\frac{1}{2}\, \frac{\Gamma(\lambda)}{(w-a)^{\lambda}} - \frac{1}{2}\, \frac{\Gamma(\lambda)}{(w+a)^{\lambda}}$$By proposition (07) and its corollary. Similarly$$\cosh ax = \frac{e^{ax}+e^{-ax}}{2}\, \Rightarrow$$
$$\mathfrak{L}(x^{\lambda-1}\cosh ax) = \mathfrak{L}\left( \frac{x^{\lambda-1} e^{ax }}{2} \right) + \mathfrak{L}\left( \frac{x^{\lambda-1} e^{-ax }}{2} \right) = $$$$\frac{1}{2}\, \frac{\Gamma(\lambda)}{(w-a)^{\lambda}} + \frac{1}{2}\, \frac{\Gamma(\lambda)}{(w+a)^{\lambda}}$$Hence$$\mathfrak{L}(x^{\lambda-1}\sinh ax) = \frac{\Gamma(\lambda)}{2}\, \frac{ (w+a)^{\lambda} - (w-a)^{\lambda} }{(w^2-a^2)^{\lambda}}$$And$$\mathfrak{L}(x^{\lambda-1}\cosh ax) = \frac{\Gamma(\lambda)}{2}\, \frac{ (w+a)^{\lambda} + (w-a)^{\lambda} }{(w^2-a^2)^{\lambda}}$$As was to be shown. $$\Box$$
 
  • #12
----------------
Proposition 15:
----------------
Let $$\mathscr{Re}(w) > |\mathscr{Im}(b)|$$, then:$${\color{BrickRed} \mathfrak{L}(\sin(a+bx)) = \frac{w\sin a + b\cos a}{(w^2+b^2)} }$$Proof:By the Addition formula for the Sine:$$\sin(x\pm y) = \sin x\cos y \pm \cos x\sin y \Rightarrow$$$$\mathfrak{L}(\sin(a+bx)) = \mathfrak{L}(\sin a\ \cos bx + \cos a\sin bx) = \sin a\, \mathfrak{L}(\cos bx) + \cos a\, \mathfrak{L}(\sin bx)
$$By proposition (05) this equates to$$\sin a\, \frac{w}{w^2+b^2} +\cos a\, \frac{b}{w^2+b^2} \Rightarrow $$$$\mathfrak{L}(\sin(a+bx)) = \frac{w\sin a + b\cos a}{(w^2+b^2)}$$This concludes the proof. $$\Box$$
 
  • #13
----------------
Proposition 16:
----------------
Let $$\mathscr{Re}(w) > |\mathscr{Im}(b)|$$, then:$${\color{BrickRed} \mathfrak{L}(\cos(a+bx)) = \frac{w\cos a - b\sin a}{(w^2+b^2)} }$$Proof:By the Addition formula for the Cosine:$$\cos (x\pm y) = \cos x\cos y \mp \sin x\sin y \Rightarrow$$$$\mathfrak{L}(\cos(a+bx)) = \mathfrak{L}(\cos a\ \cos bx - \sin a\sin bx) = \cos a\, \mathfrak{L}(\cos bx) - \sin a\, \mathfrak{L}(\sin bx)
$$By proposition (05) this equates to$$\cos a\, \frac{w}{w^2+b^2} -\sin a\, \frac{b}{w^2+b^2} \Rightarrow $$$$\mathfrak{L}(\cos(a+bx)) = \frac{w\cos a - b\sin a}{(w^2+b^2)}$$This concludes the proof. $$\Box$$
 
  • #14
----------------
Proposition 17:
----------------
Let $$\mathscr{Re}(w) > |\mathscr{Im}(b)|$$, then:$${\color{BrickRed} \mathfrak{L}(\sinh(a+bx)) = \frac{w\sinh a + b\cosh a}{(w^2-b^2)} }$$Proof:By the Addition formula for the Hyperbolic Sine:$$\sinh(x\pm y) = \sinh x\cosh y \pm \cosh x\sinh y \Rightarrow$$$$\mathfrak{L}(\sinh(a+bx)) = \mathfrak{L}(\sinh a\ \cosh bx + \cosh a\sinh bx) = \sinh a\, \mathfrak{L}(\cosh bx) + \cosh a\, \mathfrak{L}(\sinh bx)
$$By proposition (06) this equates to$$\sinh a\, \frac{w}{w^2-b^2} +\cosh a\, \frac{b}{w^2-b^2} \Rightarrow $$$$\mathfrak{L}(\sinh(a+bx)) = \frac{w\sinh a + b\cosh a}{(w^2-b^2)}$$This concludes the proof. $$\Box$$
 
  • #15
----------------
Proposition 18:
----------------
Let $$\mathscr{Re}(w) > |\mathscr{Im}(b)|$$, then:$${\color{BrickRed} \mathfrak{L}(\cosh(a+bx)) = \frac{w\cosh a + b\sinh a}{(w^2-b^2)} }$$Proof:By the Addition formula for the Hyperbolic Cosine:$$\cosh (x\pm y) = \cosh x\cosh y \pm \sinh x\sinh y \Rightarrow$$$$\mathfrak{L}(\cosh(a+bx)) = \mathfrak{L}(\cosh a \cosh bx + \sinh a\sinh bx) = \cos ah\, \mathfrak{L}(\cosh bx) + \sinh a\, \mathfrak{L}(\sinh bx)
$$By proposition (06) this equates to$$\cosh a\, \frac{b}{w^2-b^2} +\sinh a\, \frac{w}{w^2-b^2} \Rightarrow $$$$\mathfrak{L}(\cosh(a+bx)) = \frac{w\cosh a + b\sinh a}{(w^2-b^2)}$$This concludes the proof. $$\Box$$
 
Last edited:
  • #16
----------------
Proposition 19:
----------------
Defining the Modified Bessel function of the second kind (of order 1/2) in the usual way:$$K_{1/2}(x) = e^{-x}\, \sqrt{\frac{\pi}{2x}}$$And with $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, as well as $$\mathscr{Re}(\lambda) > 1/2$$, then:$$ {\color{BrickRed} \mathfrak{L}(x^{\lambda-1}K_{1/2}(ax)) = \sqrt{ \frac{\pi}{2a} }\, \frac{ \Gamma\left( \lambda - \frac{1}{2} \right) }{(w+a)^{\lambda -1/2} } }$$Proof:$$\mathfrak{L}(x^{\lambda-1} K_{1/2}(ax)) = \int_0^{\infty}e^{-wx}x^{\lambda-1} K_{1/2}(ax)\, dx =
$$$$\sqrt{ \frac{\pi}{2a} }\, \int_0^{\infty} x^{\lambda-3/2}e^{-(w+a)x}\, dx = \frac{1}{(w+a)^{\lambda-1/2}} \sqrt{ \frac{\pi}{2a} }\, \int_0^{\infty} e^{-t}t^{\lambda-3/2} \, dt = $$$$\sqrt{ \frac{\pi}{2a} }\, \frac{ \Gamma\left( \lambda - \frac{1}{2} \right) }{(w+a)^{\lambda -1/2} } $$$$\Box$$
 
Last edited:
  • #17
----------------
Proposition 20:
----------------
Defining the Modified Bessel function of the second kind (of order 1/2) in the usual way:$$K_{1/2}(x) = e^{-x}\, \sqrt{\frac{\pi}{2x}}$$And with $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, as well as $$\mathscr{Re}(\lambda) > 1/2$$, then:$$ {\color{BrickRed} \mathfrak{L}(x^{\lambda-1}K_{1/2}(ax)\, \log x) = }$$$$ {\color{BrickRed} \sqrt{ \frac{\pi}{2a} }\, \frac{ \Gamma\left( \lambda - \frac{1}{2} \right) }{(w+a)^{\lambda -1/2} }\, \Bigg[ \psi_0\left( \lambda - \frac{1}{2} \right) - \log(w+a) \Bigg] }$$Proof:This follows by differentiation of both sides of proposition (19) with respect to the parameter $$\lambda$$, and then using$$\psi_0(x) = \frac{d}{dx}\, \log\Gamma(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$$$\Box$$
 
  • #18
More generally, we define the Modified Bessel function of the second kind, of fractional 'half-order' $$n+1/2$$ - where $$n \in\mathbb{N} \cup \{0\}$$ - by the finite sum:$$K_{n+1/2}(x) = e^{-x}\, \sqrt{ \frac{\pi}{2x} }\, \sum_{j=0}^n \frac{(n+j)!}{2^jj!\, (n-j)!x^j}$$The first few examples of which are:$$K_{1/2}(x) = e^{-x} \, \sqrt{ \frac{\pi}{2x} }$$$$K_{3/2}(x) = e^{-x} \, \sqrt{ \frac{\pi}{2x} }\, \left( \frac{1}{x} +1\right)$$$$K_{5/2}(x) = e^{-x} \, \sqrt{ \frac{\pi}{2x} }\, \left( \frac{3}{x^2} + \frac{3}{x} + 1\right)
$$$$K_{7/2}(x) = e^{-x} \, \sqrt{ \frac{\pi}{2x} }\, \left( \frac{15}{x^3} + \frac{15}{x^2} + \frac{6}{x} + 1\right)
$$
In general, as the previous case $$(n=0)$$ in propositions (19) and (20) illustrates, should we wish to multiply these functions by $$x^{\lambda-1}$$, and then find the Laplace transform, we will require that the parameter $$\lambda$$ satisfies $$\mathscr{Re}(\lambda) > n+1/2$$.
----------------
Proposition 21:
----------------
For $$n\in\mathbb{N}\cup \{0\}$$, $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > n+1/2$$: $${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}K_{n+1/2}(ax)) = }$$$${\color{BrickRed} \sqrt{ \frac{\pi}{2a} }\, \sum_{j=0}^n \frac{(n+j)!\, \Gamma\left( \lambda - j - \frac{1}{2} \right) }{2^jj!\, (n-j)!a^j(w+a)^{\lambda - j - 1/2} } }$$
Proof:
$$\mathfrak{L}(x^{\lambda-1}K_{n+1/2}(ax)) = $$$$\sqrt{ \frac{\pi}{2a} }\, \sum_{j=0}^n \frac{(n+j)!}{2^jj!\, (n-j)!a^j}\, \int_0^{\infty} x^{\lambda-j-3/2} e^{-(w+a)x}\, dx = $$$$\sqrt{ \frac{\pi}{2a} }\, \sum_{j=0}^n \frac{(n+j)!}{2^jj!\, (n-j)!a^j}\, \frac{1}{(w+a)}\, \int_0^{\infty} \left( \frac{t}{w+a} \right)^{\lambda-j-3/2} e^{-t}\, dx = $$$$\sqrt{ \frac{\pi}{2a} }\, \sum_{j=0}^n \frac{(n+j)!}{2^jj!\, (n-j)!a^j(w+a)^{\lambda - j - 1/2} }\, \int_0^{\infty} t^{\lambda-j-3/2} e^{-t}\, dx = $$$$\sqrt{ \frac{\pi}{2a} }\, \sum_{j=0}^n \frac{(n+j)!\, \Gamma\left( \lambda - j - \frac{1}{2} \right) }{2^jj!\, (n-j)!a^j(w+a)^{\lambda - j - 1/2} } $$
This concludes the proof. $$\Box$$
----------------
Corollary:
----------------
$${\color{BrickRed} \mathfrak{L}(x^{\lambda-1}K_{n+1/2}(ax)\, \log x) = }$$$${\color{BrickRed} \sqrt{ \frac{\pi}{2a} }\, \sum_{j=0}^n \frac{(n+j)!\, \Gamma\left( \lambda - j - \frac{1}{2} \right) }{2^jj!\, (n-j)!a^j(w+a)^{\lambda - j - 1/2} } \, \left[ \psi_0\left( \lambda - j - \frac{1}{2} \right) - \log(w+a) \right] }$$Proof:Differentiate proposition (21) with respect to the parameter $$\lambda$$. The L.H.S. is easy, whereas the finite series on the R.H.S. contains the general (differentiated!) term:$$\frac{d}{d\lambda}\, \frac{ \Gamma\left( \lambda - j - \frac{1}{2} \right) }{(w+a)^{\lambda - j - 1/2}} = $$$$\frac{ \Gamma\left( \lambda - j - \frac{1}{2} \right) }{(w+a)^{\lambda - j - 1/2}} \, \left[ \psi_0\left( \lambda - j - \frac{1}{2} \right) - \log(w+a) \right] $$
This proves the Corollary. $$\Box$$
 
Last edited:
  • #19
----------------
Proposition 22:
----------------
Let $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then: $${\color{BrickRed} \mathfrak{L} (x^{\lambda-1}\sinh ax\, \log x) = }$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{2(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] -
\frac{\Gamma(\lambda)}{2(w+a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg] } $$
Proof:By proposition (14) - Part 1 - we have:$$ \mathfrak{L}(x^{\lambda-1}\sinh ax) = \frac{\Gamma(\lambda)}{2}\, \frac{ (w+a)^{\lambda} - (w-a)^{\lambda} }{(w^2-a^2)^{\lambda}} = $$$$ \frac{\Gamma(\lambda)}{2}\, \left[ \frac{1}{(w-a)^{\lambda}} - \frac{1}{(w+a)^{\lambda}} \right]$$Hence$$\mathfrak{L}'(x^{\lambda-1}\sinh ax) = \frac{d}{d\lambda} \mathfrak{L}(x^{\lambda-1}\sinh ax) = $$$$\frac{\Gamma'(\lambda)}{2}\, \left[ \frac{1}{(w-a)^{\lambda}} - \frac{1}{(w+a)^{\lambda}} \right] +$$$$\frac{\Gamma(\lambda)}{2}\, \left[ -\frac{\log(w-a)}{(w-a)^{\lambda}} + \frac{\log(w+a)}{(w+a)^{\lambda}} \right] = $$$$\frac{\Gamma(\lambda)}{2(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] -
\frac{\Gamma(\lambda)}{2(w+a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg] $$Conversely,$$\mathfrak{L}'(x^{\lambda-1}\sinh ax) = \frac{d}{d\lambda} \mathfrak{L}(x^{\lambda-1}\sinh ax) = $$$$\frac{d}{d\lambda}\, \int_0^{\infty}e^{-wx}x^{\lambda-1}\sinh ax\, dx = \int_0^{\infty}e^{-wx}\sinh ax\, \left[ \frac{d}{d\lambda}\, x^{\lambda-1} \right]\, dx = $$$$\int_0^{\infty}e^{-wx}x^{\lambda-1}\sinh ax\, \log x\, dx \equiv \mathfrak{L} (x^{\lambda-1}\sinh ax\, \log x)$$This concludes the proof. $$\Box$$
 
  • #20
----------------
Proposition 23:
----------------
Let $$\mathscr{Re}(w) > -\mathscr{Re}(a)$$, and $$\mathscr{Re}(\lambda) > 0$$, then: $${\color{BrickRed} \mathfrak{L} (x^{\lambda-1}\cosh ax\, \log x) = }$$$${\color{BrickRed} \frac{\Gamma(\lambda)}{2(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] +
\frac{\Gamma(\lambda)}{2(w+a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg] } $$
Proof:By proposition (14) - Part 2 - we have:$$ \mathfrak{L}(x^{\lambda-1}\cosh ax) = \frac{\Gamma(\lambda)}{2}\, \frac{ (w+a)^{\lambda} + (w-a)^{\lambda} }{(w^2-a^2)^{\lambda}} = $$$$ \frac{\Gamma(\lambda)}{2}\, \left[ \frac{1}{(w-a)^{\lambda}} + \frac{1}{(w+a)^{\lambda}} \right]$$Hence$$\mathfrak{L}'(x^{\lambda-1}\cosh ax) = \frac{d}{d\lambda} \mathfrak{L}(x^{\lambda-1}\cosh ax) = $$$$\frac{\Gamma'(\lambda)}{2}\, \left[ \frac{1}{(w-a)^{\lambda}} + \frac{1}{(w+a)^{\lambda}} \right] +$$$$\frac{\Gamma(\lambda)}{2}\, \left[ -\frac{\log(w-a)}{(w-a)^{\lambda}} - \frac{\log(w+a)}{(w+a)^{\lambda}} \right] = $$$$\frac{\Gamma(\lambda)}{2(w-a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w-a) \Bigg] +
\frac{\Gamma(\lambda)}{2(w+a)^{\lambda}}\, \Bigg[ \psi_0(\lambda) - \log(w+a) \Bigg] $$Conversely,$$\mathfrak{L}'(x^{\lambda-1}\cosh ax) = \frac{d}{d\lambda} \mathfrak{L}(x^{\lambda-1}\cosh ax) = $$$$\frac{d}{d\lambda}\, \int_0^{\infty}e^{-wx}x^{\lambda-1}\cosh ax\, dx = \int_0^{\infty}e^{-wx}\cosh ax\, \left[ \frac{d}{d\lambda}\, x^{\lambda-1} \right]\, dx = $$$$\int_0^{\infty}e^{-wx}x^{\lambda-1}\cosh ax\, \log x\, dx \equiv \mathfrak{L} (x^{\lambda-1}\cosh ax\, \log x)$$This concludes the proof. $$\Box$$
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K