MHB Largest Even Integer: Impossible Sum of Two Odd Composites

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    even Integer
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the largest even integer which cannot be written as the sum of two odd composite numbers.
 
Mathematics news on Phys.org
anemone said:
Find the largest even integer which cannot be written as the sum of two odd composite numbers.
I must be missing something. Say we have a, b, c, d are all odd primes. Then e = ab + cd. But there is no largest prime so how can e be bounded?

-Dan
 
anemone said:
Find the largest even integer which cannot be written as the sum of two odd composite numbers.
I will use the notation $*5$ to denote any positive integer ending in $5$, apart from the number $5$ itself. So $*5$ could be $15,25,35,\ldots$. Notice that any number of the form $*5$ is odd and composite.

The smallest odd composite numbers are $9,15,21,25,27,33,\ldots$.

If an even integer ends in $0$ and is greater than $20$ then it is of the form $15 + *5$.

If an even integer ends in $2$ and is greater than $32$ then it is of the form $27 + *5$.

If an even integer ends in $4$ and is greater than $14$ then it is of the form $9 + *5$.

If an even integer ends in $6$ and is greater than $26$ then it is of the form $21 + *5$.

If an even integer ends in $8$ and is greater than $38$ then it is of the form $33 + *5$.

The largest even number not included in any of those categories is $38$. You can easily verify that $38$ cannot be expressed as the sum of two odd composite numbers. So it is the largest such even number.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top