MHB LCC 205 8.4.12 sine substitution

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Sine Substitution
Click For Summary
The discussion focuses on solving the integral I = ∫(1/2 to 1) (√(1 - x²) / x²) dx using sine substitution. The substitution x = sin(u) leads to a change of variables that simplifies the integral to ∫(π/6 to π/2) cot²(u) du. The result of the integral is expressed as I = [-cot(u) - u] evaluated from π/2 to π/6. The final answer is I = √3 - π/3. Participants note that the notation for the definite integral should be corrected, and a constant of integration is unnecessary in this context.
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{LCC \ \ 205 \ \ \ 8.4.12 \ \ sine \ \ substitution }$
$$\displaystyle
I=\int_{1/2}^{1} \frac{\sqrt{1-{x}^{2 }}}{{x}^{2 }} \ dx $$
Substitution
$$\displaystyle
x = \sin \left({u}\right)
\ \ \ dx=\cos\left({u}\right)\ du $$
Change of variables
$$\arcsin\left({1/2 }\right)=\frac{\pi}{6}=a
\ \ \ \arcsin\left({1}\right)=\frac{\pi}{2}=b$$
$$\displaystyle
I=\int_{a}^{b}
\frac{\sqrt{1-\sin^{2 }{u}}}{\sin^{2 }{u} }
\cos\left({u}\right) \ du
\implies
\int_{a}^{b}
\frac{\cos^{2 }{u}}{\sin^{2 }{u} } \ du
\implies\int_{a}^{b} \cot^2 \left({u}\right) \ du $$
By table reference
$$\displaystyle
I=-\cot{u}-u+C$$
Then
$$\displaystyle
I=\left[I\right]_{\pi/2}^{\pi/6} +C
=\sqrt{3}-\frac{\pi}{3}+C$$
No book answer, not sure of proper notation 🏄

$\tiny{\text{from math study group at Surf The Nations}}$
🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄
 
Physics news on Phys.org
Should be $$\large{\left.I\right|^{\frac{\pi}{2}}_{\frac{\pi}{6}}}$$ and you don't need a constant of integration as it's a definite integral. Other than those two things it looks good. :)
 
So then..
$\displaystyle
\large{\left.I\right|
^{\pi/2}_{\pi/6}}
=\sqrt{3}-\frac{\pi}{3} $
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K