MHB LCC 205 8.4.12 sine substitution

  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Sine Substitution
karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{LCC \ \ 205 \ \ \ 8.4.12 \ \ sine \ \ substitution }$
$$\displaystyle
I=\int_{1/2}^{1} \frac{\sqrt{1-{x}^{2 }}}{{x}^{2 }} \ dx $$
Substitution
$$\displaystyle
x = \sin \left({u}\right)
\ \ \ dx=\cos\left({u}\right)\ du $$
Change of variables
$$\arcsin\left({1/2 }\right)=\frac{\pi}{6}=a
\ \ \ \arcsin\left({1}\right)=\frac{\pi}{2}=b$$
$$\displaystyle
I=\int_{a}^{b}
\frac{\sqrt{1-\sin^{2 }{u}}}{\sin^{2 }{u} }
\cos\left({u}\right) \ du
\implies
\int_{a}^{b}
\frac{\cos^{2 }{u}}{\sin^{2 }{u} } \ du
\implies\int_{a}^{b} \cot^2 \left({u}\right) \ du $$
By table reference
$$\displaystyle
I=-\cot{u}-u+C$$
Then
$$\displaystyle
I=\left[I\right]_{\pi/2}^{\pi/6} +C
=\sqrt{3}-\frac{\pi}{3}+C$$
No book answer, not sure of proper notation 🏄

$\tiny{\text{from math study group at Surf The Nations}}$
🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄
 
Physics news on Phys.org
Should be $$\large{\left.I\right|^{\frac{\pi}{2}}_{\frac{\pi}{6}}}$$ and you don't need a constant of integration as it's a definite integral. Other than those two things it looks good. :)
 
So then..
$\displaystyle
\large{\left.I\right|
^{\pi/2}_{\pi/6}}
=\sqrt{3}-\frac{\pi}{3} $
 
For original Zeta function, ζ(s)=1+1/2^s+1/3^s+1/4^s+... =1+e^(-slog2)+e^(-slog3)+e^(-slog4)+... , Re(s)>1 Riemann extended the Zeta function to the region where s≠1 using analytical extension. New Zeta function is in the form of contour integration, which appears simple but is actually more inconvenient to analyze than the original Zeta function. The original Zeta function already contains all the information about the distribution of prime numbers. So we only handle with original Zeta...

Similar threads

Replies
5
Views
2K
Replies
3
Views
2K
Replies
3
Views
1K
Replies
2
Views
1K
Replies
6
Views
2K
Replies
6
Views
1K
Replies
4
Views
1K
Back
Top