LCC 205 8.4.12 sine substitution

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Sine Substitution
Click For Summary
SUMMARY

The discussion focuses on the evaluation of the integral \( I = \int_{1/2}^{1} \frac{\sqrt{1-x^2}}{x^2} \, dx \) using the sine substitution method. The substitution \( x = \sin(u) \) transforms the integral into \( I = \int_{\pi/6}^{\pi/2} \cot^2(u) \, du \). The final result is calculated as \( I = \sqrt{3} - \frac{\pi}{3} \), with a correction noted regarding the notation for definite integrals and the unnecessary inclusion of a constant of integration.

PREREQUISITES
  • Understanding of definite integrals
  • Familiarity with trigonometric identities
  • Knowledge of substitution methods in calculus
  • Ability to interpret integral notation
NEXT STEPS
  • Study the properties of definite integrals in calculus
  • Learn about trigonometric substitutions in integral calculus
  • Explore the derivation and applications of cotangent functions
  • Review integration techniques involving square roots and trigonometric functions
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus and integral evaluation techniques, will benefit from this discussion.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\tiny{LCC \ \ 205 \ \ \ 8.4.12 \ \ sine \ \ substitution }$
$$\displaystyle
I=\int_{1/2}^{1} \frac{\sqrt{1-{x}^{2 }}}{{x}^{2 }} \ dx $$
Substitution
$$\displaystyle
x = \sin \left({u}\right)
\ \ \ dx=\cos\left({u}\right)\ du $$
Change of variables
$$\arcsin\left({1/2 }\right)=\frac{\pi}{6}=a
\ \ \ \arcsin\left({1}\right)=\frac{\pi}{2}=b$$
$$\displaystyle
I=\int_{a}^{b}
\frac{\sqrt{1-\sin^{2 }{u}}}{\sin^{2 }{u} }
\cos\left({u}\right) \ du
\implies
\int_{a}^{b}
\frac{\cos^{2 }{u}}{\sin^{2 }{u} } \ du
\implies\int_{a}^{b} \cot^2 \left({u}\right) \ du $$
By table reference
$$\displaystyle
I=-\cot{u}-u+C$$
Then
$$\displaystyle
I=\left[I\right]_{\pi/2}^{\pi/6} +C
=\sqrt{3}-\frac{\pi}{3}+C$$
No book answer, not sure of proper notation 🏄

$\tiny{\text{from math study group at Surf The Nations}}$
🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄🏄
 
Physics news on Phys.org
Should be $$\large{\left.I\right|^{\frac{\pi}{2}}_{\frac{\pi}{6}}}$$ and you don't need a constant of integration as it's a definite integral. Other than those two things it looks good. :)
 
So then..
$\displaystyle
\large{\left.I\right|
^{\pi/2}_{\pi/6}}
=\sqrt{3}-\frac{\pi}{3} $
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K