Lebesgue Outer Measure .... Carothers, Proposition 16.1 ....

  • Context: MHB 
  • Thread starter Thread starter Math Amateur
  • Start date Start date
  • Tags Tags
    Measure
Click For Summary
SUMMARY

The discussion centers on Proposition 16.1 from N. L. Carothers' "Real Analysis," specifically addressing the proof's requirement to expand intervals $J_k$ and shrink intervals $I_n$. The author suggests expanding $J_k$ to open intervals and shrinking $I_n$ to closed intervals while maintaining the necessary inequalities. A critical insight is that the alterations preserve both the inclusion of sets and the summation inequalities, ensuring the proof's validity. The adjustments involve precise calculations using a defined $\delta$ to manage the lengths of the intervals effectively.

PREREQUISITES
  • Understanding of Lebesgue Measure and its properties
  • Familiarity with interval notation and types (open, closed)
  • Basic knowledge of real analysis proofs and inequalities
  • Ability to manipulate summations and limits in mathematical contexts
NEXT STEPS
  • Study the concept of Lebesgue Measure in detail, focusing on its axioms and applications
  • Learn about the properties of open and closed intervals in real analysis
  • Explore advanced techniques in manipulating inequalities in proofs
  • Review additional examples of interval alterations in measure theory
USEFUL FOR

Mathematics students, particularly those studying real analysis, educators teaching measure theory, and researchers interested in Lebesgue Measure and its applications.

Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I am reading N. L. Carothers' book: "Real Analysis". ... ...

I am focused on Chapter 16: Lebesgue Measure ... ...

I need help with an aspect of the proof of Proposition 16.1 ...

Proposition 16.1 and its proof read as follows:
Carothers - Proposition 16.1 ... .png

In the above text from Carothers we read the following:

" ... ... But now, by expanding each $J_k$ slightly and shrinking each $I_n$ slightly, we may suppose that the $J_k$ are open and the $I_n$ are closed. ... "Can someone please explain how Carothers is expecting the $J_k$ to be expanded and the $I_n$ to be shrunk ... and further, why the proof is still valid after the $J_k$ and $I_n$ have been altered in this way ... ...
EDIT: My thoughts ...

We could expand each $J_k$ by altering or replacing intervals of the form $(a, b), [a, b)$ and $(a, b]$ by $[a, b]$ ...

This would expand the $J_k$ by one or two points only leaving the length of the intervals unchanged ...

BUT ... we cannot (as Carothers wishes) then suppose the $J_k$ are open ... indeed they would all be closed ... so we have to find another to expand the $J_k$ slightly

A similar problem arises if we shrink the I_n by replacing intervals of the form $[a, b], [a, b)$ and $(a, b]$ by $(a, b)$ ...

Help will be appreciated ...

Peter
 
Last edited:
Physics news on Phys.org
Hi Peter,

This is a sneaky argument made by the author. Let $D = \sum_{n=1}^{N} l(I_{n}) - \sum_{k=1}^{\infty}l(J_{k})>0$. Let $\delta = D/8$. Expand each $J_{k}$ to an open interval, say $J_{k}'$, of length $l(J_{k}) + \delta/2^{k}$ and shrink each $I_{n}$ to a closed interval, say $I_{n}'$, of length $l(I_{n}) - \delta/2^{n}$. Note that this alteration of the intervals preserves the inclusion $\bigcup_{n=1}^{N}I_{n}'\subset \bigcup_{k=1}^{\infty}J_{k}'.$ It also preserves the inequality of the summations. Indeed, by the way $\delta$ was chosen, $$\sum_{k=1}^{\infty}l(J_{k}') = \sum_{k=1}^{\infty}l(J_{k}) + \delta < \sum_{n=1}^{N}l(I_{n}) - \delta =\sum_{n=1}^{N}l(I_{n}) - \sum_{n=1}^{\infty}\delta/2^{n} < \sum_{n=1}^{N}\left[l(I_{n})-\delta/2^{n}\right] = \sum_{n=1}^{N}l(I_{n}').$$ Hence, both the set inclusion and the inequality in the summation remain the same, even when the specified alterations are made to $I_{n}$ and $J_{k}$. This is a tricky one, so certainly feel free to let me know if anything is still unclear.

Edit: The length of $I_{n}'$ should be $l(I_{n}) - \delta/2^{n}$. There was a typo in my original post when I wrote $l(I_{n})+\delta/2^{n}$.
 
Last edited:
Thanks for a most helpful reply GJA ...

I would never have seen that without your help!

Indeed, I am still studying and reflecting on your post ...

Peter
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K