MHB Left or Right Angles ( + or - ) of adjoining vectors

  • Thread starter Thread starter BrentK
  • Start date Start date
  • Tags Tags
    Angles Vectors
Click For Summary
To determine if the angle between two adjoining vectors is positive or negative, the leading vector can be represented as the difference in coordinates. By rotating this vector 90 degrees anticlockwise, the inner product with the adjoining vector can be calculated. A positive inner product indicates a left angle, while a negative one indicates a right angle. The conditions for these angles are defined by specific inequalities involving the coordinates of the vectors. The discussion highlights the challenges faced in understanding these calculations, emphasizing the importance of community support in learning.
BrentK
Messages
20
Reaction score
0
Hi there,
I have another one for you (Blush)

How can I efficiently determine if the angle between 2 vectors is positive or negative...
Take a look at this example drawing:

View attachment 8685

Known are the xy coordinates of 2 adjoining vectors, (I also have calcullated the 360 deg angle relative to the x-axis if that is a help ... shown with grey arrows on the drawing)
In the drawing the leading vector (Red) as adjoined to either a vector giving a positive or (left) angle, or a vector in the negative direction (right) angle.

I need to be able to calculate if the adjoining vector is a positive or negative angle in relation to the leading vector... sounds simple right? and proabably is, but I just don't seem to be able to get it right with all different vector direction possibilities

The formula should calculate all possibilites of two adjoining vectors, so e.g. could also be heading in the opposite direction where x1y1 is less than x0y0... hope you understand what i mean :)

Look forward to any help yo may be able to provide.
Many thanks, This forum has been a great help to me!
 

Attachments

  • Unbenannt.JPG
    Unbenannt.JPG
    9.9 KB · Views: 127
Mathematics news on Phys.org
Start with the red vector, which is $\begin{bmatrix}x_1-x_0 \\ y_1-y_0\end{bmatrix}$. If you rotate it "to the left" (in other words, anticlockwise) by $90^\circ$ then it becomes $\begin{bmatrix}y_0-y_1 \\x_1-x_0\end{bmatrix}$. You want to know whether the inner product of that vector with the blue vector $\begin{bmatrix}x_2-x_1 \\ y_2-y_1\end{bmatrix}$ is positive. So the condition you need is $$x_0(y_1-y_2) + x_1(y_2-y_0) + x_2(y_0-y_1) > 0 \quad \text{for "left",}$$ $$x_0(y_1-y_2) + x_1(y_2-y_0) + x_2(y_0-y_1) < 0 \quad \text{for "right".}$$
 
Thanks again Oplag!
That worked fine...
Now I have found a new challenge... If you are willing,I'd appreciate you take a look at my new post.

I really appreciate your help. I'm not that great at Maths...I'm trying hard and learning, but this task is very hard for me! Without you and the help of others on this forum, I'd be totaly lost!
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

Replies
7
Views
3K
  • · Replies 18 ·
Replies
18
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
5K
Replies
5
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
1
Views
2K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K