MHB Legendre Polynomials: Pattern Analysis & Integration

AI Thread Summary
The discussion focuses on the calculation of coefficients \(c_n\) derived from the piecewise function \(f(x)\) using Legendre polynomials \(\mathcal{P}_n(x)\). It is established that \(c_n\) is zero for even \(n\) and can be expressed for odd \(n\) in terms of integrals involving \(\mathcal{P}_n(x)\). The use of Rodrigues's formula is suggested for evaluating the integrals, leading to a recursive relation that aids in finding \(c_n\). The final expression for \(c_n\) reveals a specific pattern based on the parity of \(n\), confirming that the coefficients for even \(n\) are zero while those for odd \(n\) follow a distinct formula. This analysis highlights the relationship between Legendre polynomials and the coefficients in the context of the given function.
Dustinsfl
Messages
2,217
Reaction score
5
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?
 
Mathematics news on Phys.org
For reference - sorry! - but I think you should define Legendre polynimials... :o
 
@ Dreamweaver: Here's everything you want to know about Legendre polynomials, and more.

I'm kinda curious about the series solution myself.

-Dan
 
dwsmith said:
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?

\begin{align}
c_n &= \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx\\
&= \frac{2n + 1}{2}\left[\int_{0}^1\mathcal{P}_n(x)dx +
\int_{0}^1\mathcal{P}_n(-x)dx\right]
\end{align}
Since \(\mathcal{P}_{\ell}(-x) = (-1)^{\ell}\mathcal{P}_{\ell}(x)\), we now have
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)(1 - (-1)^{\ell})dx\\
\]
If \(\ell\) is even, then the integral is 0, but if \(\ell\) is odd, we gain a factor of 2.
\[
c_n =
\begin{cases}
(2n + 1)\int_{0}^1\mathcal{P}_n(x), & \text{\(\ell\) odd}\\
0, & \text{if \(\ell\) is even}
\end{cases}
\]
We can now use the recursive relation
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2\ell + 1}\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right).
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\int_0^1\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right)dx\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell + 1}(1) - \mathcal{P}_{\ell + 1}(0) - \mathcal{P}_{\ell - 1}(1) + \mathcal{P}_{\ell - 1}(0)\right]\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell - 1}(0) - \mathcal{P}_{\ell + 1}(0)\right]\quad\text{for }\ell\geq 1
\end{align}
We have that Rodrigues's formula is
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}}(x^2 - 1)^{\ell}
\]
so
\[
\mathcal{P}_{\ell}(0) = \left.\frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}} \sum_{n=0}^{\ell}\binom{\ell}{n}(x^2)^n(-1)^{\ell - n}\right|_{x=0}
\]
Since we need even terms, we now have
\[
\mathcal{P}_{\ell}(0) = \frac{1}{2^{\ell}\ell !}\binom{\ell}{\frac{\ell}{2}}
\ell!(-1)^{\ell/2}
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\left[\frac{1}{2^{\ell - 1}}\binom{\ell - 1}{\frac{\ell - 1}{2}}(-1)^{(\ell - 1)/2} - \frac{1}{2^{\ell + 1}}\binom{\ell + 1}{\frac{\ell + 1}{2}}(-1)^{(\ell + 1)/2}\right]\\
&= \frac{(-1)^{(\ell - 1)/2}}{2^{\ell - 1}}\frac{(\ell - 1)!}{\left(\frac{\ell - 1}{2}\right)!\left(\frac{\ell - 1}{2}\right)!}\frac{1}{\ell + 1}
\end{align}
Thus,
\[
c_n =
\begin{cases}
\frac{2n + 1}{n + 1}\frac{(-1)^{(n - 1)/2}}{2^{n - 1}}\frac{(n - 1)!}{\left[\left(\frac{n - 1}{2}\right)!\right]^2}, & \text{for } n \text{ odd}\\
0, & \text{for } n \text{ even}
\end{cases}
\]
 
Last edited:
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top