Legendre Polynomials: Pattern Analysis & Integration

Click For Summary
SUMMARY

The discussion focuses on the analysis of Legendre polynomials, specifically the coefficients \(c_n\) derived from the function \(f(x)\) defined piecewise over the intervals \([-1, 0]\) and \([0, 1]\). The coefficients \(c_n\) are calculated using integrals of the Legendre polynomial \(\mathcal{P}_n(x)\), revealing a pattern where \(c_n\) is zero for even \(n\) and follows a specific formula for odd \(n\). The discussion also explores the application of Rodrigues's formula and recursive relations to derive these coefficients, leading to a definitive expression for \(c_n\) based on the parity of \(n\).

PREREQUISITES
  • Understanding of Legendre polynomials and their properties
  • Familiarity with integral calculus and definite integrals
  • Knowledge of Rodrigues's formula for Legendre polynomials
  • Basic concepts of Fourier series and their coefficients
NEXT STEPS
  • Study the properties and applications of Legendre polynomials in mathematical physics
  • Learn about the derivation and implications of Rodrigues's formula
  • Explore the connection between Legendre polynomials and Fourier series
  • Investigate the recursive relations for Legendre polynomials and their significance
USEFUL FOR

Mathematicians, physicists, and students interested in advanced calculus, particularly those studying orthogonal polynomials and their applications in solving differential equations.

Dustinsfl
Messages
2,217
Reaction score
5
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?
 
Physics news on Phys.org
For reference - sorry! - but I think you should define Legendre polynimials... :o
 
@ Dreamweaver: Here's everything you want to know about Legendre polynomials, and more.

I'm kinda curious about the series solution myself.

-Dan
 
dwsmith said:
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?

\begin{align}
c_n &= \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx\\
&= \frac{2n + 1}{2}\left[\int_{0}^1\mathcal{P}_n(x)dx +
\int_{0}^1\mathcal{P}_n(-x)dx\right]
\end{align}
Since \(\mathcal{P}_{\ell}(-x) = (-1)^{\ell}\mathcal{P}_{\ell}(x)\), we now have
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)(1 - (-1)^{\ell})dx\\
\]
If \(\ell\) is even, then the integral is 0, but if \(\ell\) is odd, we gain a factor of 2.
\[
c_n =
\begin{cases}
(2n + 1)\int_{0}^1\mathcal{P}_n(x), & \text{\(\ell\) odd}\\
0, & \text{if \(\ell\) is even}
\end{cases}
\]
We can now use the recursive relation
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2\ell + 1}\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right).
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\int_0^1\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right)dx\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell + 1}(1) - \mathcal{P}_{\ell + 1}(0) - \mathcal{P}_{\ell - 1}(1) + \mathcal{P}_{\ell - 1}(0)\right]\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell - 1}(0) - \mathcal{P}_{\ell + 1}(0)\right]\quad\text{for }\ell\geq 1
\end{align}
We have that Rodrigues's formula is
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}}(x^2 - 1)^{\ell}
\]
so
\[
\mathcal{P}_{\ell}(0) = \left.\frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}} \sum_{n=0}^{\ell}\binom{\ell}{n}(x^2)^n(-1)^{\ell - n}\right|_{x=0}
\]
Since we need even terms, we now have
\[
\mathcal{P}_{\ell}(0) = \frac{1}{2^{\ell}\ell !}\binom{\ell}{\frac{\ell}{2}}
\ell!(-1)^{\ell/2}
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\left[\frac{1}{2^{\ell - 1}}\binom{\ell - 1}{\frac{\ell - 1}{2}}(-1)^{(\ell - 1)/2} - \frac{1}{2^{\ell + 1}}\binom{\ell + 1}{\frac{\ell + 1}{2}}(-1)^{(\ell + 1)/2}\right]\\
&= \frac{(-1)^{(\ell - 1)/2}}{2^{\ell - 1}}\frac{(\ell - 1)!}{\left(\frac{\ell - 1}{2}\right)!\left(\frac{\ell - 1}{2}\right)!}\frac{1}{\ell + 1}
\end{align}
Thus,
\[
c_n =
\begin{cases}
\frac{2n + 1}{n + 1}\frac{(-1)^{(n - 1)/2}}{2^{n - 1}}\frac{(n - 1)!}{\left[\left(\frac{n - 1}{2}\right)!\right]^2}, & \text{for } n \text{ odd}\\
0, & \text{for } n \text{ even}
\end{cases}
\]
 
Last edited:

Similar threads

  • · Replies 30 ·
2
Replies
30
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K