MHB Legendre Polynomials: Pattern Analysis & Integration

Click For Summary
The discussion focuses on the calculation of coefficients \(c_n\) derived from the piecewise function \(f(x)\) using Legendre polynomials \(\mathcal{P}_n(x)\). It is established that \(c_n\) is zero for even \(n\) and can be expressed for odd \(n\) in terms of integrals involving \(\mathcal{P}_n(x)\). The use of Rodrigues's formula is suggested for evaluating the integrals, leading to a recursive relation that aids in finding \(c_n\). The final expression for \(c_n\) reveals a specific pattern based on the parity of \(n\), confirming that the coefficients for even \(n\) are zero while those for odd \(n\) follow a distinct formula. This analysis highlights the relationship between Legendre polynomials and the coefficients in the context of the given function.
Dustinsfl
Messages
2,217
Reaction score
5
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?
 
Mathematics news on Phys.org
For reference - sorry! - but I think you should define Legendre polynimials... :o
 
@ Dreamweaver: Here's everything you want to know about Legendre polynomials, and more.

I'm kinda curious about the series solution myself.

-Dan
 
dwsmith said:
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?

\begin{align}
c_n &= \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx\\
&= \frac{2n + 1}{2}\left[\int_{0}^1\mathcal{P}_n(x)dx +
\int_{0}^1\mathcal{P}_n(-x)dx\right]
\end{align}
Since \(\mathcal{P}_{\ell}(-x) = (-1)^{\ell}\mathcal{P}_{\ell}(x)\), we now have
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)(1 - (-1)^{\ell})dx\\
\]
If \(\ell\) is even, then the integral is 0, but if \(\ell\) is odd, we gain a factor of 2.
\[
c_n =
\begin{cases}
(2n + 1)\int_{0}^1\mathcal{P}_n(x), & \text{\(\ell\) odd}\\
0, & \text{if \(\ell\) is even}
\end{cases}
\]
We can now use the recursive relation
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2\ell + 1}\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right).
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\int_0^1\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right)dx\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell + 1}(1) - \mathcal{P}_{\ell + 1}(0) - \mathcal{P}_{\ell - 1}(1) + \mathcal{P}_{\ell - 1}(0)\right]\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell - 1}(0) - \mathcal{P}_{\ell + 1}(0)\right]\quad\text{for }\ell\geq 1
\end{align}
We have that Rodrigues's formula is
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}}(x^2 - 1)^{\ell}
\]
so
\[
\mathcal{P}_{\ell}(0) = \left.\frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}} \sum_{n=0}^{\ell}\binom{\ell}{n}(x^2)^n(-1)^{\ell - n}\right|_{x=0}
\]
Since we need even terms, we now have
\[
\mathcal{P}_{\ell}(0) = \frac{1}{2^{\ell}\ell !}\binom{\ell}{\frac{\ell}{2}}
\ell!(-1)^{\ell/2}
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\left[\frac{1}{2^{\ell - 1}}\binom{\ell - 1}{\frac{\ell - 1}{2}}(-1)^{(\ell - 1)/2} - \frac{1}{2^{\ell + 1}}\binom{\ell + 1}{\frac{\ell + 1}{2}}(-1)^{(\ell + 1)/2}\right]\\
&= \frac{(-1)^{(\ell - 1)/2}}{2^{\ell - 1}}\frac{(\ell - 1)!}{\left(\frac{\ell - 1}{2}\right)!\left(\frac{\ell - 1}{2}\right)!}\frac{1}{\ell + 1}
\end{align}
Thus,
\[
c_n =
\begin{cases}
\frac{2n + 1}{n + 1}\frac{(-1)^{(n - 1)/2}}{2^{n - 1}}\frac{(n - 1)!}{\left[\left(\frac{n - 1}{2}\right)!\right]^2}, & \text{for } n \text{ odd}\\
0, & \text{for } n \text{ even}
\end{cases}
\]
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
990
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K