MHB Legendre Polynomials: Pattern Analysis & Integration

Dustinsfl
Messages
2,217
Reaction score
5
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?
 
Mathematics news on Phys.org
For reference - sorry! - but I think you should define Legendre polynimials... :o
 
@ Dreamweaver: Here's everything you want to know about Legendre polynomials, and more.

I'm kinda curious about the series solution myself.

-Dan
 
dwsmith said:
Consider
\[
f(x) = \begin{cases}
1, & 0\leq x\leq 1\\
-1, & -1\leq x\leq 0
\end{cases}
\]
Then
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx
\]
where \(\mathcal{P}_n(x)\) is the Legendre Polynomial of order n.
Our first few \(c_n\) are \(0, 3/2, 0, -7/8, 0, 11/16, 0, -75/128, 0, ...\).
Is there a pattern to this? I know \(n\) even is 0 but can I obtain a nice solution?

By this I mean, if I had a Fourier series, I could get a solution of the form
\[
A_n = \begin{cases}
0, & \text{if n is even}\\
\frac{4}{n\pi}, & \text{if n is odd}
\end{cases}
\]

If I can obtain such a solution, how? Is it by simply noticing a geometric pattern in the terms or can I integrate \(\mathcal{P}_n(x)\)?

Does the Rodrigues's formula need to be used in the integral?

\begin{align}
c_n &= \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)dx -
\frac{2n + 1}{2}\int_{-1}^0\mathcal{P}_n(x)dx\\
&= \frac{2n + 1}{2}\left[\int_{0}^1\mathcal{P}_n(x)dx +
\int_{0}^1\mathcal{P}_n(-x)dx\right]
\end{align}
Since \(\mathcal{P}_{\ell}(-x) = (-1)^{\ell}\mathcal{P}_{\ell}(x)\), we now have
\[
c_n = \frac{2n + 1}{2}\int_{0}^1\mathcal{P}_n(x)(1 - (-1)^{\ell})dx\\
\]
If \(\ell\) is even, then the integral is 0, but if \(\ell\) is odd, we gain a factor of 2.
\[
c_n =
\begin{cases}
(2n + 1)\int_{0}^1\mathcal{P}_n(x), & \text{\(\ell\) odd}\\
0, & \text{if \(\ell\) is even}
\end{cases}
\]
We can now use the recursive relation
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2\ell + 1}\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right).
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\int_0^1\left(\frac{d\mathcal{P}_{\ell + 1}(x)}{dx} - \frac{\mathcal{P}_{\ell - 1}(x)}{dx}\right)dx\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell + 1}(1) - \mathcal{P}_{\ell + 1}(0) - \mathcal{P}_{\ell - 1}(1) + \mathcal{P}_{\ell - 1}(0)\right]\\
&= \frac{1}{2\ell + 1}\left[\mathcal{P}_{\ell - 1}(0) - \mathcal{P}_{\ell + 1}(0)\right]\quad\text{for }\ell\geq 1
\end{align}
We have that Rodrigues's formula is
\[
\mathcal{P}_{\ell}(x) = \frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}}(x^2 - 1)^{\ell}
\]
so
\[
\mathcal{P}_{\ell}(0) = \left.\frac{1}{2^{\ell}\ell !}\frac{d^{\ell}}{dx^{\ell}} \sum_{n=0}^{\ell}\binom{\ell}{n}(x^2)^n(-1)^{\ell - n}\right|_{x=0}
\]
Since we need even terms, we now have
\[
\mathcal{P}_{\ell}(0) = \frac{1}{2^{\ell}\ell !}\binom{\ell}{\frac{\ell}{2}}
\ell!(-1)^{\ell/2}
\]
Then
\begin{align}
I_{\ell} &= \frac{1}{2\ell + 1}\left[\frac{1}{2^{\ell - 1}}\binom{\ell - 1}{\frac{\ell - 1}{2}}(-1)^{(\ell - 1)/2} - \frac{1}{2^{\ell + 1}}\binom{\ell + 1}{\frac{\ell + 1}{2}}(-1)^{(\ell + 1)/2}\right]\\
&= \frac{(-1)^{(\ell - 1)/2}}{2^{\ell - 1}}\frac{(\ell - 1)!}{\left(\frac{\ell - 1}{2}\right)!\left(\frac{\ell - 1}{2}\right)!}\frac{1}{\ell + 1}
\end{align}
Thus,
\[
c_n =
\begin{cases}
\frac{2n + 1}{n + 1}\frac{(-1)^{(n - 1)/2}}{2^{n - 1}}\frac{(n - 1)!}{\left[\left(\frac{n - 1}{2}\right)!\right]^2}, & \text{for } n \text{ odd}\\
0, & \text{for } n \text{ even}
\end{cases}
\]
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top