- #1

physconomic

- 15

- 1

- Homework Statement
- If you had legendre polynomials defined in ##L^2([-1,1])##, with ##||Pn_2||^2=\frac{2}{2n+1}##, show that for any polynomial with p a set of ##L^2([-1,1])##, with degree less than n, we have the inner product of ##P_n## and p = 0. Find the polynomials ##P_0,... P_4##

- Relevant Equations
- Integral form of inner product

If you had legendre polynomials defined in ##L^2([-1,1])##, with ##||Pn_2||^2=\frac{2}{2n+1}##, show that for any polynomial with p a set of ##L^2([-1,1])##, with degree less than n, we have the inner product of ##P_n## and p = 0. Find the polynomials ##P_0,... P_4##

Tried to use the integral form but getting no where with it

Tried to use the integral form but getting no where with it