Length Contraction (Dilation?)

Click For Summary
Fast-moving objects in relative motion always experience length contraction, regardless of their direction of travel. Observers at rest measure this contraction using synchronized clocks, without considering visual effects from light travel times. When an object approaches, it may appear longer, but once it passes, it appears shorter due to these visual effects, including a phenomenon known as Penrose-Terrell rotation. This rotation can create the illusion that a spherical object appears normal, but non-spherical objects like trains can visibly demonstrate length contraction. Ultimately, the principles of special relativity confirm that length contraction is a measurable effect, not just a visual illusion.
skycastlefish
Messages
13
Reaction score
0
Do fast moving objects in relative motion always observe length contraction regardless of their direction of travel? In every example I find the train or the rod appears to be “moving toward you.” I can’t find any thought experiments describing what happens after you pass the train and it appears to be moving away from you. It seems to me that the length might appear to dilate? But then, wouldn’t the light from the rear of the train reach the relative observer first and the light from the front delayed making it still measure contracted? I don’t know… help?
 
Physics news on Phys.org
skycastlefish said:
Do fast moving objects in relative motion always observe length contraction regardless of their direction of travel? In every example I find the train or the rod appears to be “moving toward you.” I can’t find any thought experiments describing what happens after you pass the train and it appears to be moving away from you. It seems to me that the length might appear to dilate?

No,you'd observe the same exact length contraction
 
skycastlefish said:
Do fast moving objects in relative motion always observe length contraction regardless of their direction of travel? In every example I find the train or the rod appears to be “moving toward you.” I can’t find any thought experiments describing what happens after you pass the train and it appears to be moving away from you. It seems to me that the length might appear to dilate? But then, wouldn’t the light from the rear of the train reach the relative observer first and the light from the front delayed making it still measure contracted? I don’t know… help?

In SR, when we talk about an observer in a given inertial reference frame measuring a moving as length contracted, we are in fact really talking about the measurements made by a network of observers (possibly infinite) that are all at rest with respect to each other and all with clocks synchronised according to the Einstein convention. With respect to this infinite set of observers there is no real notion of heading towards the observer or heading away from the observer. Visual effects due to light travel times are neglected and for an object traveling with constant velocity relative to the given inertial reference frame the measured length contraction is constant. The measurement is carried out by two inertial observers that are at rest with respect to each other, that happen to be at the front of the train and at the rear of the train, simultaneously in their reference frame.

If you work out what an a given observer actually sees when taking visual effects due to light travel times into account you will find that when the train is coming towards the observer it appears longer and after it passes the observer and heads away, it appears shorter. There is also a slight visual rotation of the object. This visual rotation can, in the case of a sphere, cancel out the length contraction and make a moving sphere appear normal (as long as there are no distinctive identifying patterns on the sphere). This is known as Penrose-Terrell rotation. This started a popular myth that it not possible for an observer to actually see length contraction even in principle. This is not true, because for non-spherical objects like a train, an observer can actually see the length contraction visually (for example in a photograph).
 
MOVING CLOCKS In this section, we show that clocks moving at high speeds run slowly. We construct a clock, called a light clock, using a stick of proper lenght ##L_0##, and two mirrors. The two mirrors face each other, and a pulse of light bounces back and forth betweem them. Each time the light pulse strikes one of the mirrors, say the lower mirror, the clock is said to tick. Between successive ticks the light pulse travels a distance ##2L_0## in the proper reference of frame of the clock...

Similar threads

  • · Replies 45 ·
2
Replies
45
Views
6K
  • · Replies 63 ·
3
Replies
63
Views
5K
  • · Replies 54 ·
2
Replies
54
Views
4K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
Replies
4
Views
612
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 12 ·
Replies
12
Views
1K