Graduate Levitron and Earnshaw’s theorem.

  • Thread starter Thread starter andresB
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Earnshaw's theorem, derived from Maxwell's equations, typically prohibits stable magnetic levitation in static configurations. However, the levitron serves as a counterexample, as it operates through dynamic motion rather than remaining static. The theorem does not apply to moving ferromagnets, which allows the levitron to achieve levitation by spinning. This motion creates a situation where the conditions of Earnshaw's theorem are circumvented. Thus, the levitron demonstrates that while Earnshaw's theorem generally restricts magnetic levitation, exceptions exist in dynamic systems.
andresB
Messages
625
Reaction score
374
The Earnshaw’s theorem comes directly from Maxwell equation so it should be unavoidable in any classical situation. The theorem usually disallows magnetic levitation. However, there are loopholes. Quoting wikipedia "Earnshaw's theorem has no exceptions for non-moving permanent ferromagnets. However, Earnshaw's theorem does not necessarily apply to moving ferromagnets".

The usual counterexample to the impossibility of an equilibrium situation for magnetic levitation is given by the levitron
Open article on the subject: https://iopscience.iop.org/article/10.1088/1361-6404/abbc2c

I tried the literature on the topic, but I still can't understand what is actually happening with the levitron and the Earnshaw’s theorem. Is the theorem simply not applicable to the levitron? why? how?
 
Physics news on Phys.org
andresB said:
The Earnshaw’s theorem comes directly from Maxwell equation so it should be unavoidable in any classical situation. The theorem usually disallows magnetic levitation.
It disallows stable static configurations.
andresB said:
Is the theorem simply not applicable to the levitron? why?
Because it spins, so it's not static.
 
Thread 'What is the pressure of trapped air inside this tube?'
As you can see from the picture, i have an uneven U-shaped tube, sealed at the short end. I fill the tube with water and i seal it. So the short side is filled with water and the long side ends up containg water and trapped air. Now the tube is sealed on both sides and i turn it in such a way that the traped air moves at the short side. Are my claims about pressure in senarios A & B correct? What is the pressure for all points in senario C? (My question is basically coming from watching...

Similar threads

Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • Sticky
  • · Replies 2 ·
Replies
2
Views
503K