A Levitron and Earnshaw’s theorem.

  • Thread starter Thread starter andresB
  • Start date Start date
  • Tags Tags
    Theorem
Click For Summary
Earnshaw's theorem, derived from Maxwell's equations, typically prohibits stable magnetic levitation in static configurations. However, the levitron serves as a counterexample, as it operates through dynamic motion rather than remaining static. The theorem does not apply to moving ferromagnets, which allows the levitron to achieve levitation by spinning. This motion creates a situation where the conditions of Earnshaw's theorem are circumvented. Thus, the levitron demonstrates that while Earnshaw's theorem generally restricts magnetic levitation, exceptions exist in dynamic systems.
andresB
Messages
625
Reaction score
374
The Earnshaw’s theorem comes directly from Maxwell equation so it should be unavoidable in any classical situation. The theorem usually disallows magnetic levitation. However, there are loopholes. Quoting wikipedia "Earnshaw's theorem has no exceptions for non-moving permanent ferromagnets. However, Earnshaw's theorem does not necessarily apply to moving ferromagnets".

The usual counterexample to the impossibility of an equilibrium situation for magnetic levitation is given by the levitron
Open article on the subject: https://iopscience.iop.org/article/10.1088/1361-6404/abbc2c

I tried the literature on the topic, but I still can't understand what is actually happening with the levitron and the Earnshaw’s theorem. Is the theorem simply not applicable to the levitron? why? how?
 
Physics news on Phys.org
andresB said:
The Earnshaw’s theorem comes directly from Maxwell equation so it should be unavoidable in any classical situation. The theorem usually disallows magnetic levitation.
It disallows stable static configurations.
andresB said:
Is the theorem simply not applicable to the levitron? why?
Because it spins, so it's not static.
 
Thread 'Why higher speeds need more power if backward force is the same?'
Power = Force v Speed Power of my horse = 104kgx9.81m/s^2 x 0.732m/s = 1HP =746W Force/tension in rope stay the same if horse run at 0.73m/s or at 15m/s, so why then horse need to be more powerfull to pull at higher speed even if backward force at him(rope tension) stay the same? I understand that if I increase weight, it is hrader for horse to pull at higher speed because now is backward force increased, but don't understand why is harder to pull at higher speed if weight(backward force)...

Similar threads

Replies
5
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 69 ·
3
Replies
69
Views
7K