Ledsnyder
- 26
- 0
N_{t}=The population size at time t
K=The carrying capacity of the population
N_{0}= The population size at time zero
r= the intrinsic rate of population increase (the rate at which the population grows when it is very small)
17.3 would be k since the value approach 17.3
{\scriptsize\begin{array}{|r|r|r|r|r|r|r|r|r|r|r|r|r|r|r|r|} \hline T (Gy)&R (Gly) \\ \hline 0.00037338&0.00062840\\ \hline 0.00249614&0.00395626\\ \hline 0.01530893&0.02347787\\ \hline 0.09015807&0.13632116\\ \hline 0.52234170&0.78510382\\ \hline 2.97769059&4.37361531\\ \hline 13.78720586&14.39993199\\ \hline 32.88494318&17.18490043\\ \hline 47.72506282&17.29112724\\ \hline 62.59805320&17.29930703\\ \hline 77.47372152&17.29980205\\ \hline 92.34940681&17.29990021\\ \hline \end{array}}
K=The carrying capacity of the population
N_{0}= The population size at time zero
r= the intrinsic rate of population increase (the rate at which the population grows when it is very small)
17.3 would be k since the value approach 17.3
{\scriptsize\begin{array}{|r|r|r|r|r|r|r|r|r|r|r|r|r|r|r|r|} \hline T (Gy)&R (Gly) \\ \hline 0.00037338&0.00062840\\ \hline 0.00249614&0.00395626\\ \hline 0.01530893&0.02347787\\ \hline 0.09015807&0.13632116\\ \hline 0.52234170&0.78510382\\ \hline 2.97769059&4.37361531\\ \hline 13.78720586&14.39993199\\ \hline 32.88494318&17.18490043\\ \hline 47.72506282&17.29112724\\ \hline 62.59805320&17.29930703\\ \hline 77.47372152&17.29980205\\ \hline 92.34940681&17.29990021\\ \hline \end{array}}