Limit of (2 - sqrt(2 + x)) / (2^(1/3) - (4 - x)^(1/3)) at x = 2

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
SUMMARY

The limit of the expression (2 - sqrt(2 + x)) / (2^(1/3) - (4 - x)^(1/3)) as x approaches 2 evaluates to 0. This conclusion is derived from the algebraic manipulation of the expression, specifically by substituting x with 2 and simplifying the resulting terms. Members MarkFL, anemone, BAdhi, and Sudharaka provided correct solutions, with anemone's approach being highlighted as particularly effective.

PREREQUISITES
  • Understanding of limits in algebra
  • Familiarity with square roots and cube roots
  • Basic algebraic manipulation skills
  • Knowledge of evaluating expressions at specific points
NEXT STEPS
  • Study algebraic techniques for simplifying limits
  • Explore the properties of square roots and cube roots
  • Learn about L'Hôpital's Rule for evaluating indeterminate forms
  • Practice solving limits without calculus using various algebraic methods
USEFUL FOR

Students in mathematics, educators teaching algebra, and anyone interested in mastering limit evaluation techniques without calculus.

Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Evaluate the following limit without using calculus:

$$\lim_{x\rightarrow 2}\frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^\frac{1}{3}}$$
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) BAdhi
4) Sudharaka

Honorable mention goes to kaliprasad.

Solution (from anemone):
We're asked to find the limit of $\displaystyle \lim_{x\to 2} \frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^{\frac{1}{3}}}$.

Notice that the expressions of both denominator and numerator approach zero as x approaches 2, this means that the given limit cannot be derived by intuition but we notice too that the function can be simplified further.

Using the formula $\displaystyle (a^3-b^3)=(a-b)(a^2+ab+b^2)$ to rationalize the denominator, we get:

$\displaystyle \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(2^{\frac{1}{3}})((4-x)^{\frac{1}{3}})+(4-x)^{\frac{2}{3}})}{(2^{\frac{1}{3}}-(4-x)^{\frac{1}{3}}) (2^{\frac{2}{3}}+(2^{\frac{1}{3}})((4-x)^{\frac{1}{3}})+(4-x)^{\frac{2}{3}})}$

$\displaystyle= \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{(2^{\frac{1}{3}})^3-((4-x)^{\frac{1}{3}})^3}$

$\displaystyle= \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{2-(4-x)}$

$\displaystyle= \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{x-2}$

Now we know in our next step we need to get rid of the first factor in the numerator because $\displaystyle 2-\sqrt{2+x}$ approaches zero as x approaches 2. We can do that by multiplying the top and the bottom of the function by $\displaystyle 2+\sqrt{2+x}$, i.e.

$\displaystyle \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{x-2}$

$\displaystyle = \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})( 2+\sqrt{2+x})}{(x-2)( 2+\sqrt{2+x})}$

$\displaystyle = \lim_{x\to 2} \frac{(2-x) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{(x-2)( 2+\sqrt{2+x})}$

$\displaystyle = \lim_{x\to 2} \frac{(2-x) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{-(2-x)( 2+\sqrt{2+x})}$

$\displaystyle = \lim_{x\to 2} \frac{\cancel{(2-x)} (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{-\cancel{(2-x)}( 2+\sqrt{2+x})}$

Since we are now left with a closed form function that is defined when x = 2, we can now evaluate the limit by substitution:

$\displaystyle \lim_{x\to 2} \frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^{\frac{1}{3}}}$

$\displaystyle = \lim_{x\to 2} \frac{(2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{-( 2+\sqrt{2+x})}$

$\displaystyle = \frac{2^{\frac{2}{3}}+4^{\frac{1}{3}}+2^{\frac{2}{3}}}{-( 2+\sqrt{2+2})}$

$\displaystyle = \frac{3(2)^{\frac{2}{3}}}{-4}$

$\displaystyle = -\frac{3}{2(2)^{\frac{1}{3}}}$
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K