Limit of (2 - sqrt(2 + x)) / (2^(1/3) - (4 - x)^(1/3)) at x = 2

  • Thread starter Thread starter Jameson
  • Start date Start date
Click For Summary
The limit to evaluate is $$\lim_{x\rightarrow 2}\frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^\frac{1}{3}}$$. The correct approach involves substituting x with 2, leading to an indeterminate form. By simplifying the expression, members found that the limit evaluates to 0. Several participants, including MarkFL and anemone, successfully solved the problem, with anemone providing the detailed solution. The discussion highlights the importance of algebraic manipulation in evaluating limits without calculus.
Jameson
Insights Author
Gold Member
MHB
Messages
4,533
Reaction score
13
Evaluate the following limit without using calculus:

$$\lim_{x\rightarrow 2}\frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^\frac{1}{3}}$$
--------------------
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1) MarkFL
2) anemone
3) BAdhi
4) Sudharaka

Honorable mention goes to kaliprasad.

Solution (from anemone):
We're asked to find the limit of $\displaystyle \lim_{x\to 2} \frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^{\frac{1}{3}}}$.

Notice that the expressions of both denominator and numerator approach zero as x approaches 2, this means that the given limit cannot be derived by intuition but we notice too that the function can be simplified further.

Using the formula $\displaystyle (a^3-b^3)=(a-b)(a^2+ab+b^2)$ to rationalize the denominator, we get:

$\displaystyle \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(2^{\frac{1}{3}})((4-x)^{\frac{1}{3}})+(4-x)^{\frac{2}{3}})}{(2^{\frac{1}{3}}-(4-x)^{\frac{1}{3}}) (2^{\frac{2}{3}}+(2^{\frac{1}{3}})((4-x)^{\frac{1}{3}})+(4-x)^{\frac{2}{3}})}$

$\displaystyle= \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{(2^{\frac{1}{3}})^3-((4-x)^{\frac{1}{3}})^3}$

$\displaystyle= \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{2-(4-x)}$

$\displaystyle= \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{x-2}$

Now we know in our next step we need to get rid of the first factor in the numerator because $\displaystyle 2-\sqrt{2+x}$ approaches zero as x approaches 2. We can do that by multiplying the top and the bottom of the function by $\displaystyle 2+\sqrt{2+x}$, i.e.

$\displaystyle \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{x-2}$

$\displaystyle = \lim_{x\to 2} \frac{(2-\sqrt{2+x}) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})( 2+\sqrt{2+x})}{(x-2)( 2+\sqrt{2+x})}$

$\displaystyle = \lim_{x\to 2} \frac{(2-x) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{(x-2)( 2+\sqrt{2+x})}$

$\displaystyle = \lim_{x\to 2} \frac{(2-x) (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{-(2-x)( 2+\sqrt{2+x})}$

$\displaystyle = \lim_{x\to 2} \frac{\cancel{(2-x)} (2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{-\cancel{(2-x)}( 2+\sqrt{2+x})}$

Since we are now left with a closed form function that is defined when x = 2, we can now evaluate the limit by substitution:

$\displaystyle \lim_{x\to 2} \frac{2-\sqrt{2+x}}{2^{\frac{1}{3}}-(4-x)^{\frac{1}{3}}}$

$\displaystyle = \lim_{x\to 2} \frac{(2^{\frac{2}{3}}+(8-2x)^{\frac{1}{3}}+(4-x)^{\frac{2}{3}})}{-( 2+\sqrt{2+x})}$

$\displaystyle = \frac{2^{\frac{2}{3}}+4^{\frac{1}{3}}+2^{\frac{2}{3}}}{-( 2+\sqrt{2+2})}$

$\displaystyle = \frac{3(2)^{\frac{2}{3}}}{-4}$

$\displaystyle = -\frac{3}{2(2)^{\frac{1}{3}}}$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
1K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 31 ·
2
Replies
31
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K