Limit of √(x+√(x+√x))-√x as x approaches infinity

  • Context: High School 
  • Thread starter Thread starter anemone
  • Start date Start date
Click For Summary
SUMMARY

The limit of the expression $\displaystyle \lim_{{x}\to{\infty}} \left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)$ evaluates to 1. Both Ackbach and magneto provided correct solutions, demonstrating different approaches to simplifying the nested square roots. The key technique involved rationalizing the expression and analyzing the dominant terms as x approaches infinity.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with square root properties
  • Knowledge of rationalization techniques
  • Experience with asymptotic analysis
NEXT STEPS
  • Study advanced limit evaluation techniques in calculus
  • Learn about rationalizing expressions in algebra
  • Explore asymptotic behavior of functions as x approaches infinity
  • Investigate nested functions and their limits
USEFUL FOR

Students and educators in calculus, mathematicians interested in limit evaluation, and anyone seeking to deepen their understanding of advanced algebraic techniques.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate the limit, if it exists:

$\displaystyle \lim_{{x}\to{\infty}} \left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x}\right)$.

--------------------
Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to the following members for their correct solutions:

1. Ackbach
2. magneto

Here is Ackbach's solution;

We have:
\begin{align*}
\lim_{x\to\infty} \left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} \right)
&=\lim_{x\to\infty} \left(\sqrt{x+\sqrt{x+\sqrt{x}}}-\sqrt{x} \right) \left(\frac{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\right) \\
&=\lim_{x\to\infty}\left(\frac{x+\sqrt{x+\sqrt{x}}-x}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\right) \\
&=\lim_{x\to\infty}\left(\frac{\sqrt{x+\sqrt{x}}}{\sqrt{x+\sqrt{x+\sqrt{x}}}+\sqrt{x}}\right) \\
&=\lim_{x\to\infty}\left(\frac{\sqrt{1+\sqrt{\frac1x}}}{\sqrt{1+\sqrt{\frac1x+\sqrt{\frac{1}{x^3}}}}+\sqrt{1}}\right) \\
&=\frac12.
\end{align*}

Here is the solution submitted by magneto, who approached the problem a bit different than Ackbach:

Let $x = \frac 1{h^2}$, and take the limit as $h \to 0$. The expression then simplify:

\[
\sqrt{\frac 1{h^2} + \sqrt{\frac 1{h^2} + \frac 1h}} - \frac 1h = \sqrt{\frac 1{h^2} + \frac 1h \sqrt{1+h}} - \frac 1h =
\frac 1h \left( \sqrt{1 + h \sqrt{1+h}} - 1 \right)
\]

Multiply by the conjugate, we have:
\[
\frac{1 + h\sqrt{1+h} - 1}{h \left( \sqrt{1 + h \sqrt{1+h}} + 1 \right)} = \frac{\sqrt{1+h}}{ \left( \sqrt{1 + h \sqrt{1+h}} + 1 \right)} \to \frac 12,
\text{ as $h \to 0$.}
\]
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K