MHB Limit to Infinity: Is $$\lim_{{x}\to{\infty}} \sqrt{x^2 + 2x + 1} - x = 1?$$

  • Thread starter Thread starter tmt1
  • Start date Start date
  • Tags Tags
    Infinity Limit
AI Thread Summary
The limit $$\lim_{{x}\to{\infty}} \sqrt{x^2 + 2x + 1} - x$$ is indeed equal to 1. Initial calculations may suggest it equals 0 due to the behavior of infinity, but this approach overlooks the need to simplify the expression. By rewriting the radicand as a perfect square, the limit can be accurately evaluated. The correct method reveals that the limit approaches 1 as x approaches infinity. Thus, the assertion that the limit equals 1 is confirmed.
tmt1
Messages
230
Reaction score
0
I have in my notes that $$\lim_{{x}\to{\infty}} \sqrt{x^2 + 2x + 1} - x = 1$$

Is this right? When I calculate it, I get 0, because the square root of infinity is infinity and then I subtract infinity which is 0.
 
Mathematics news on Phys.org
You can't legitimately subtract infinities...but what you can do is rewrite the radicand as a square...then the desired result is forthcoming. :D
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top