MHB Limit (x1) as m->infinity ( x1 - the lowest root )

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit Root
AI Thread Summary
The discussion revolves around finding the limit of the lowest root x1 of the quadratic equation x^2 - 2(m+1)x + 3m + 1 as m approaches infinity. The lowest root is identified as x1 = m + 1 - √(m^2 - m). To evaluate the limit, a suggested approach involves rewriting x1 as a fraction to simplify the expression. Participants clarify the notation and ensure understanding of the limit concept as m grows indefinitely. The conversation emphasizes the importance of correctly manipulating the equation to find the desired limit.
Vali
Messages
48
Reaction score
0
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
 
Mathematics news on Phys.org
Vali said:
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
You did right to start by solving the equation, and you probably found that the lower root is $x_1 = m+1 - \sqrt{m^2-m}$. The trick now is to make that into a fraction, multiplying and dividing by $m+1 + \sqrt{m^2-m}$ to get $$x_1 = \frac{\bigl( m+1 - \sqrt{m^2-m}\bigr)\bigl( m+1 + \sqrt{m^2-m}\bigr)}{m+1 + \sqrt{m^2-m}}.$$ Can you take it from there, to get the limit as $m\to\infty$?
 
Yes, I replaced m with x because I usually work with x.
Thank you very much for your help :)
 

Attachments

  • 2.jpg
    2.jpg
    58.1 KB · Views: 126
  • 3.jpg
    3.jpg
    66 KB · Views: 120
Vali said:
I need to solve lim (x1) as m->infinity

Hi Vali; do you mean "What number does x1 approach as m grows without bound"?
 
greg1313 said:
Hi Vali; do you mean "What number does x1 approach as m grows without bound"?

Yes.Sorry if I didn;t use the correct words.
 
Hey, no problem. The notation is unusual so I have asked for a clarification to benefit those who may not understand. Happy foruming! :)
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top