MHB Limit (x1) as m->infinity ( x1 - the lowest root )

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit Root
AI Thread Summary
The discussion revolves around finding the limit of the lowest root x1 of the quadratic equation x^2 - 2(m+1)x + 3m + 1 as m approaches infinity. The lowest root is identified as x1 = m + 1 - √(m^2 - m). To evaluate the limit, a suggested approach involves rewriting x1 as a fraction to simplify the expression. Participants clarify the notation and ensure understanding of the limit concept as m grows indefinitely. The conversation emphasizes the importance of correctly manipulating the equation to find the desired limit.
Vali
Messages
48
Reaction score
0
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
 
Mathematics news on Phys.org
Vali said:
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
You did right to start by solving the equation, and you probably found that the lower root is $x_1 = m+1 - \sqrt{m^2-m}$. The trick now is to make that into a fraction, multiplying and dividing by $m+1 + \sqrt{m^2-m}$ to get $$x_1 = \frac{\bigl( m+1 - \sqrt{m^2-m}\bigr)\bigl( m+1 + \sqrt{m^2-m}\bigr)}{m+1 + \sqrt{m^2-m}}.$$ Can you take it from there, to get the limit as $m\to\infty$?
 
Yes, I replaced m with x because I usually work with x.
Thank you very much for your help :)
 

Attachments

  • 2.jpg
    2.jpg
    58.1 KB · Views: 130
  • 3.jpg
    3.jpg
    66 KB · Views: 123
Vali said:
I need to solve lim (x1) as m->infinity

Hi Vali; do you mean "What number does x1 approach as m grows without bound"?
 
greg1313 said:
Hi Vali; do you mean "What number does x1 approach as m grows without bound"?

Yes.Sorry if I didn;t use the correct words.
 
Hey, no problem. The notation is unusual so I have asked for a clarification to benefit those who may not understand. Happy foruming! :)
 
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Back
Top