MHB Limit (x1) as m->infinity ( x1 - the lowest root )

  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit Root
Vali
Messages
48
Reaction score
0
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
 
Mathematics news on Phys.org
Vali said:
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
You did right to start by solving the equation, and you probably found that the lower root is $x_1 = m+1 - \sqrt{m^2-m}$. The trick now is to make that into a fraction, multiplying and dividing by $m+1 + \sqrt{m^2-m}$ to get $$x_1 = \frac{\bigl( m+1 - \sqrt{m^2-m}\bigr)\bigl( m+1 + \sqrt{m^2-m}\bigr)}{m+1 + \sqrt{m^2-m}}.$$ Can you take it from there, to get the limit as $m\to\infty$?
 
Yes, I replaced m with x because I usually work with x.
Thank you very much for your help :)
 

Attachments

  • 2.jpg
    2.jpg
    58.1 KB · Views: 124
  • 3.jpg
    3.jpg
    66 KB · Views: 118
Vali said:
I need to solve lim (x1) as m->infinity

Hi Vali; do you mean "What number does x1 approach as m grows without bound"?
 
greg1313 said:
Hi Vali; do you mean "What number does x1 approach as m grows without bound"?

Yes.Sorry if I didn;t use the correct words.
 
Hey, no problem. The notation is unusual so I have asked for a clarification to benefit those who may not understand. Happy foruming! :)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top