Limit (x1) as m->infinity ( x1 - the lowest root )

  • Context: MHB 
  • Thread starter Thread starter Vali
  • Start date Start date
  • Tags Tags
    Limit Root
Click For Summary
SUMMARY

The discussion revolves around finding the limit of the lowest root \( x_1 \) of the quadratic equation \( x^2 - 2(m+1)x + 3m + 1 = 0 \) as \( m \) approaches infinity. The lowest root is expressed as \( x_1 = m + 1 - \sqrt{m^2 - m} \). By manipulating this expression into a fraction, the limit can be evaluated, leading to the conclusion that \( \lim_{m \to \infty} x_1 = 1 \).

PREREQUISITES
  • Understanding of quadratic equations and their roots
  • Familiarity with limits in calculus
  • Knowledge of the discriminant method for solving quadratics
  • Ability to manipulate algebraic expressions and fractions
NEXT STEPS
  • Study the concept of limits in calculus, focusing on limits at infinity
  • Learn about the quadratic formula and its applications
  • Explore the properties of parabolas and their roots
  • Practice manipulating algebraic expressions for limit evaluation
USEFUL FOR

Students and educators in mathematics, particularly those studying calculus and algebra, as well as anyone interested in solving quadratic equations and evaluating limits.

Vali
Messages
48
Reaction score
0
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
 
Physics news on Phys.org
Vali said:
I have the following equation: x^2 - 2(m+1)x + 3m + 1=0
Also, I know that x1 is the lowest root of this equation.
I need to solve lim (x1) as m->infinity
A. 1
B. 3/2
C. 0
D. -1/2
E. -1
I tried to solve the equation with the discriminant then to calculate the limit but didn't work.
Also, I think that because x1 is the lowest root and the function graphic is a parabola, I tink that -b/2a (the peak of parabola) > x1 but I don't see how this condition would help me.
Some ideas?
Thanks!
You did right to start by solving the equation, and you probably found that the lower root is $x_1 = m+1 - \sqrt{m^2-m}$. The trick now is to make that into a fraction, multiplying and dividing by $m+1 + \sqrt{m^2-m}$ to get $$x_1 = \frac{\bigl( m+1 - \sqrt{m^2-m}\bigr)\bigl( m+1 + \sqrt{m^2-m}\bigr)}{m+1 + \sqrt{m^2-m}}.$$ Can you take it from there, to get the limit as $m\to\infty$?
 
Yes, I replaced m with x because I usually work with x.
Thank you very much for your help :)
 

Attachments

  • 2.jpg
    2.jpg
    58.1 KB · Views: 140
  • 3.jpg
    3.jpg
    66 KB · Views: 133
Vali said:
I need to solve lim (x1) as m->infinity

Hi Vali; do you mean "What number does x1 approach as m grows without bound"?
 
greg1313 said:
Hi Vali; do you mean "What number does x1 approach as m grows without bound"?

Yes.Sorry if I didn;t use the correct words.
 
Hey, no problem. The notation is unusual so I have asked for a clarification to benefit those who may not understand. Happy foruming! :)
 

Similar threads

Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
17
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K