MHB Limits of x* when n and m Approach Infinity

Click For Summary
The discussion centers on the limits of sequences as variables n and m approach infinity. It clarifies that if the limit of a sequence indexed by m, specifically $\lim_{m\to\infty} y_{m+1} = x^*$, holds true, then it can be inferred that $\lim_{n\to\infty} y_{n-1} = x^*$ as well, assuming n and m are independent integers. The concept of dummy variables in limits is emphasized, indicating that the specific index does not affect the limit's outcome. Additionally, it is noted that any subsequence of a converging sequence will also converge to the same limit. This understanding is crucial for analyzing the behavior of sequences in mathematical contexts.
ozkan12
Messages
145
Reaction score
0
if $\lim_{{n}\to{\infty}} {y}_{m+1}={x}^{*}$, Can we say that $\lim_{{n}\to{\infty}} {y}_{n-1}={x}^{*}$...Please pay attention, I say m and n...
 
Physics news on Phys.org
ozkan12 said:
if $\lim_{{n}\to{\infty}} {y}_{m+1}={x}^{*}$, Can we say that $\lim_{{n}\to{\infty}} {y}_{n-1}={x}^{*}$...Please pay attention, I say m and n...

Did you mean to write

If
$$\lim_{m\to\infty}y_{m+1}=x^*,$$
can we say that
$$\lim_{n\to\infty}y_{n-1}=x^*?$$

Because, if so, the answer is yes, if $n$ and $m$ are just independent integers going to infinity. The variable used in the limit is just like a "dummy variable". You can also show that if $n$ is an arbitrary integer, and
$$\lim_{n\to\infty}y_n=x^*,$$
then any subsequence must also converge:
$$\lim_{m\to\infty}y_{n_m}=x^*.$$
 
Dear Ackbach

How if $\lim_{{m}\to{\infty}} {y}_{m+1}={x}^{*}$ we can say that $\lim_{{n}\to{\infty}} {y}_{n}={x}^{*}$ ? I didnt understand...Please can you explain...Thank you for your attention
 
Last edited:
We all know the definition of n-dimensional topological manifold uses open sets and homeomorphisms onto the image as open set in ##\mathbb R^n##. It should be possible to reformulate the definition of n-dimensional topological manifold using closed sets on the manifold's topology and on ##\mathbb R^n## ? I'm positive for this. Perhaps the definition of smooth manifold would be problematic, though.

Similar threads

  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
Replies
6
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K